Loading…

Effects of monensin on glucose metabolism in transition dairy cows

Eight multiparous periparturient Holstein cows fitted with ruminal cannula were used in a split plot design to evaluate the effects of monensin on plasma glucose metabolism. Diets were top-dressed daily with 0 mg/cow of monensin (control) or 300 mg/cow of monensin (MON) both pre- and postpartum. Pla...

Full description

Saved in:
Bibliographic Details
Published in:Journal of dairy science 2017-11, Vol.100 (11), p.9020-9035
Main Authors: Markantonatos, X., Varga, G.A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Eight multiparous periparturient Holstein cows fitted with ruminal cannula were used in a split plot design to evaluate the effects of monensin on plasma glucose metabolism. Diets were top-dressed daily with 0 mg/cow of monensin (control) or 300 mg/cow of monensin (MON) both pre- and postpartum. Plasma glucose kinetic parameters on d −13 ± 2.0 and 19 ± 1.6 relative to parturition were determined by using stable isotopes. Na-1-13C3-Propionate (labeled propionate) was infused into the rumen to measure glucose synthesis originating from ruminal propionate, and U-13C-glucose (labeled glucose) was injected into the jugular vein to determine total glucose kinetics. A sampling period of 480 min following labeled glucose injection was implemented. A compartmental analysis was employed to determine steady state glucose kinetic parameters. To develop a steady state glucose model, the Windows version of SAAM software (WinSAAM) was used. A 4-compartment model was adequate to comprehensively describe plasma glucose metabolism. The main model compartments consisted of propionate and plasma glucose. The time frame of the 480-min sampling period post-tracer glucose infusion allowed accurate quantification of glucose metabolism. The model estimated that glucose input from sources other than ruminal propionate decreased with MON, from 2.26 to 1.09 g/min postpartum. Gluconeogenesis, expressed as the propionate contribution to the plasma glucose pool, increased in cows fed MON (22 vs. 31%), whereas glucose oxidation, expressed as the glucose disposal rate, significantly decreased (1.67 vs. 0.92 g/min). In conclusion, MON may improve the energy status of transition cows by (1) improving the efficiency of propionate to produce glucose and (2) decreasing glucose oxidation in body tissues.
ISSN:0022-0302
1525-3198
DOI:10.3168/jds.2016-12007