Loading…
Changing sea ice melt parameters in the Canadian Arctic Archipelago: Implications for the future presence of multiyear ice
Estimates of annual sea ice melt onset, freeze onset, and melt duration are made within the Canadian Arctic Archipelago (CAA) using SeaWinds/QuikSCAT data from 2000 to 2007. The average date of melt onset occurred on day 150, the average freeze onset occurred on day 266, and the average number of da...
Saved in:
Published in: | Journal of Geophysical Research. C. Oceans 2008-09, Vol.113 (C9), p.n/a |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Estimates of annual sea ice melt onset, freeze onset, and melt duration are made within the Canadian Arctic Archipelago (CAA) using SeaWinds/QuikSCAT data from 2000 to 2007. The average date of melt onset occurred on day 150, the average freeze onset occurred on day 266, and the average number of days of melt was 116. Melt onset occurred first, and freeze onset occurred last within the Amundsen, Western Arctic Waterway, and Eastern Parry Channel regions, whereas the reverse occurred in the Queen Elizabeth Islands (QEI) and the M'Clure and Viscount‐Melville regions. Multiyear sea ice (MYI) increases occurred from 2000 to 2004 because of dynamic import and first‐year sea ice (FYI) being promoted to MYI, but this replenishment virtually stopped from 2005 to 2007, coincident with longer melt seasons. Only after two consecutive long melt seasons (2005–2006) and almost no replenishment were regions to the south of the QEI cleared of MYI. We argue that this is because MYI must slowly ablate on the underside while in transit within the CAA from the small oceanic heat flux and can therefore survive for several years in southern regions without replenishment. Net positive dynamic MYI import into the CAA was observed in 2007 following MYI removal during 2005–2006. Longer melt seasons will continue to reduce the inventory of FYI in the CAA following the melt season. Longer melt seasons within the CAA will likely not reduce MYI dynamic import, but it remains to be seen whether or not this MYI will be able to survive longer melt seasons as it migrates to the southern regions. |
---|---|
ISSN: | 0148-0227 2169-9275 2156-2202 2169-9291 |
DOI: | 10.1029/2008JC004730 |