Loading…

ERG – A small-satellite mission to investigate the dynamics of the inner magnetosphere

The Earth’s inner magnetosphere (inside 10 Re) is a region where particle energy increases to the relativistic energy range. This region is very important as a laboratory where high-energy particle acceleration can be directly measured in a dipolar field configuration, as well as for human activitie...

Full description

Saved in:
Bibliographic Details
Published in:Advances in space research 2006-01, Vol.38 (8), p.1861-1869
Main Authors: Shiokawa, K., Seki, K., Miyoshi, Y., Ieda, A., Ono, T., Iizima, M., Nagatsuma, T., Obara, T., Takashima, T., Asamura, K., Kasaba, Y., Matsuoka, A., Saito, Y., Saito, H., Hirahara, M., Tonegawa, Y., Toyama, F., Tanaka, M., Nose, M., Kasahara, Y., Yumoto, K., Kawano, H., Yoshikawa, A., Ebihara, Y., Yukimatsu, A., Sato, N., Watanabe, S.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The Earth’s inner magnetosphere (inside 10 Re) is a region where particle energy increases to the relativistic energy range. This region is very important as a laboratory where high-energy particle acceleration can be directly measured in a dipolar field configuration, as well as for human activities in space including space weather prediction. Despite abundant in situ satellite measurements, this region has been “missing” because of several difficulties arising from the measurements, such as high-energy particle contamination of low-energy particle measurement, protection against the possible incidence of radiation belt particles on the satellite, and the difficulties of measuring three-dimensional particles over a broad energy range, from a few electron volts to more than 10 MeV. In this paper, we address important scientific topics and propose a possible configuration of small satellites termed Energization and Radiation in Geospace (ERG), which would provide new insights into the dynamics of the inner magnetosphere and strongly contribute to the International Living With a Star project.
ISSN:0273-1177
1879-1948
DOI:10.1016/j.asr.2005.05.089