Loading…

SHRIMP U–Pb dating, trace elements and the Lu–Hf isotope system of coesite-bearing zircon from amphibolite in the SW Sulu UHP terrane, eastern China

In this study, we link mineral inclusion data, trace element analyses, U–Pb age and Hf isotope composition obtained from distinct zircon domains of complex zircon to unravel the origin and multi-stage metamorphic evolution of amphibolites from the Sulu ultrahigh-pressure (UHP) terrane, eastern China...

Full description

Saved in:
Bibliographic Details
Published in:Geochimica et cosmochimica acta 2008-06, Vol.72 (12), p.2973-3000
Main Authors: Liu, Fulai, Gerdes, Axel, Zeng, Lingsen, Xue, Huaimin
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this study, we link mineral inclusion data, trace element analyses, U–Pb age and Hf isotope composition obtained from distinct zircon domains of complex zircon to unravel the origin and multi-stage metamorphic evolution of amphibolites from the Sulu ultrahigh-pressure (UHP) terrane, eastern China. Zircon grains separated from amphibolites from the CCSD-MH drill hole (G12) and Niushan outcrop (G13) were subdivided into two main types based on cathodoluminescence (CL) and Laser Raman spectroscopy: big dusty zircons with inherited cores and UHP metamorphic rims and small clear zircons. Weakly zoned, grey-white luminescent inherited cores preserve mineral inclusions of Cpx+Pl+Ap±Qtz indicative of a mafic igneous protolith. Dark grey luminescent overgrowth rims contain the coesite eclogite-facies mineral inclusion assemblage Coe+Grt+Omp+Phe+Ap, and formed at T=732–839°C and P=3.0–4.0GPa. In contrast, white luminescent small clear zircons preserve mineral inclusions formed during retrograde HP quartz eclogite to LP amphibolite-facies metamorphism (T=612–698°C and P=0.70–1.05GPa). Inherited zircons from both samples yield SHRIMP 206Pb/238U ages of 695–520Ma with an upper intercept age of 800±31Ma. The UHP rims yield consistent Triassic ages around 236–225 and 239–225Ma for G12 and G13 with weighted means of 229±3 and 231±3Ma, respectively. Small clear zircons from both samples give 206Pb/238U ages around 219–210Ma with a weighted mean of 214±3Ma, interpreted as the age of retrograde quartz eclogite-facies metamorphism. Matrix amphibole from both samples indicate Ar–Ar ages of 209±0.7 and 207±0.7Ma, respectively, probably dating late amphibolite-facies retrogression. The data suggest subduction of Neoproterozoic mafic igneous rocks to UHP conditions in Middle Triassic (∼230Ma) times and subsequent exhumation to an early HP (∼214Ma) and a late LP stage (∼208Ma) over a period of ∼16 and 6Myr, respectively. Thus, early exhumation from a mantle depth of 120–100km to about 60km occurred at an average rate of 0.3cm/y, while subsequent exhumation to a middle crustal level took place at approximately 0.54cm/y. These exhumation rates are considerably slower than those obtained for UHP rocks in the Dora Maira and Kokchetav massifs (2–3cm/y). Based on similar P–T estimates and trace element and Hf isotope compositions, Sulu amphibolites can be identified as retrograde UHP eclogites. The εHf(800) of +8 implies a significant input from the depleted mantle to the Sulu–Dabie
ISSN:0016-7037
1872-9533
DOI:10.1016/j.gca.2008.04.007