Loading…

Neuronal PAS Domain Protein 1 Is a Transcriptional Repressor and Requires Arylhydrocarbon Nuclear Translocator for Its Nuclear Localization

Neuronal PAS domain protein 1 (NPAS1), a basic helix-loop-helix-PAS transcription factor expressed in the central nervous system, has been suggested to be involved in neuronal differentiation. However, relatively little is known about the molecular mechanism underlying the role of NPAS1 during devel...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of biological chemistry 2006-11, Vol.281 (45), p.34617-34629
Main Authors: Teh, Christina H.L., Lam, Kevin K.Y., Loh, Chin C., Loo, Jia M., Yan, Tie, Lim, Tit Meng
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Neuronal PAS domain protein 1 (NPAS1), a basic helix-loop-helix-PAS transcription factor expressed in the central nervous system, has been suggested to be involved in neuronal differentiation. However, relatively little is known about the molecular mechanism underlying the role of NPAS1 during development. In this study we set out to characterize the different domains within NPAS1. We showed that the nuclear localization of NPAS1 is dependent on the presence of ARNT. In addition, the transcriptional potential of ARNT is not required for this localization. In the absence of ARNT, NPAS1 is excluded from the nucleus, and this exclusion is due to the presence of a nuclear export signal within the N terminus of NPAS1. The interaction between NPAS1 and ARNT is via their N termini. We found no transactivation domain within NPAS1; instead, we mapped out at least three repression domains within NPAS1, suggesting that NPAS1 acts as a repressor. Furthermore, our experiments showed that NPAS1 is able to repress the transactivation functions of ARNT and ARNT2. We suggest that NPAS1 is guided into the nucleus by ARNT via the ARNT nuclear localization signal, and NPAS1 can override the activation function of adjacent transcription factors, providing a mechanism by which NPAS1 may inhibit transcription.
ISSN:0021-9258
1083-351X
DOI:10.1074/jbc.M604409200