Loading…

Artificial intelligence for breast cancer screening: Opportunity or hype?

Interpretation of mammography for breast cancer (BC) screening can confer a mortality benefit through early BC detection, can miss a cancer that is present or fast growing, or can result in false-positives. Efforts to improve screening outcomes have mostly focused on intensifying imaging practices (...

Full description

Saved in:
Bibliographic Details
Published in:Breast (Edinburgh) 2017-12, Vol.36, p.31-33
Main Authors: Houssami, Nehmat, Lee, Christoph I., Buist, Diana S.M., Tao, Dacheng
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Interpretation of mammography for breast cancer (BC) screening can confer a mortality benefit through early BC detection, can miss a cancer that is present or fast growing, or can result in false-positives. Efforts to improve screening outcomes have mostly focused on intensifying imaging practices (double instead of single-reading, more frequent screens, or supplemental imaging) that may add substantial resource expenditures and harms associated with population screening. Less attention has been given to making mammography screening practice ‘smarter’ or more efficient. Artificial intelligence (AI) is capable of advanced learning using large complex datasets and has the potential to perform tasks such as image interpretation. With both highly-specific capabilities, and also possible un-intended (and poorly understood) consequences, this viewpoint considers the promise and current reality of AI in BC detection.
ISSN:0960-9776
1532-3080
DOI:10.1016/j.breast.2017.09.003