Loading…

Artificial intelligence for breast cancer screening: Opportunity or hype?

Interpretation of mammography for breast cancer (BC) screening can confer a mortality benefit through early BC detection, can miss a cancer that is present or fast growing, or can result in false-positives. Efforts to improve screening outcomes have mostly focused on intensifying imaging practices (...

Full description

Saved in:
Bibliographic Details
Published in:Breast (Edinburgh) 2017-12, Vol.36, p.31-33
Main Authors: Houssami, Nehmat, Lee, Christoph I., Buist, Diana S.M., Tao, Dacheng
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c362t-20728516728f5b3d942d7069cd6fae16e99d86c4a3e13fa3a8f4fa525f006e33
cites cdi_FETCH-LOGICAL-c362t-20728516728f5b3d942d7069cd6fae16e99d86c4a3e13fa3a8f4fa525f006e33
container_end_page 33
container_issue
container_start_page 31
container_title Breast (Edinburgh)
container_volume 36
creator Houssami, Nehmat
Lee, Christoph I.
Buist, Diana S.M.
Tao, Dacheng
description Interpretation of mammography for breast cancer (BC) screening can confer a mortality benefit through early BC detection, can miss a cancer that is present or fast growing, or can result in false-positives. Efforts to improve screening outcomes have mostly focused on intensifying imaging practices (double instead of single-reading, more frequent screens, or supplemental imaging) that may add substantial resource expenditures and harms associated with population screening. Less attention has been given to making mammography screening practice ‘smarter’ or more efficient. Artificial intelligence (AI) is capable of advanced learning using large complex datasets and has the potential to perform tasks such as image interpretation. With both highly-specific capabilities, and also possible un-intended (and poorly understood) consequences, this viewpoint considers the promise and current reality of AI in BC detection.
doi_str_mv 10.1016/j.breast.2017.09.003
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1942734813</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0960977617305751</els_id><sourcerecordid>1942734813</sourcerecordid><originalsourceid>FETCH-LOGICAL-c362t-20728516728f5b3d942d7069cd6fae16e99d86c4a3e13fa3a8f4fa525f006e33</originalsourceid><addsrcrecordid>eNp9kE1PwzAMhiMEYmPwDxDqkUuLk7RpwwE0TXxMmrTL7lGWOiPT1pakQ9q_J1OBIxdHsh77jR9CbilkFKh42GZrjzr0GQNaZiAzAH5GxrTgLOVQwTkZgxSQyrIUI3IVwhYAJBfVJRmxSvKKlmxM5lPfO-uM07vENT3udm6DjcHEtj4ZAhKjY8MnwXjExjWbx2TZda3vD43rj0nkPo4dPl-TC6t3AW9-3glZvb6sZu_pYvk2n00XqeGC9SmDklUFFbHaYs1rmbO6BCFNLaxGKlDKuhIm1xwpt5rryuZWF6ywAAI5n5D7YW3n288Dhl7tXTDx37rB9hAUjQtLnlf0hOYDanwbgkerOu_22h8VBXVyqLZqOFGdHCqQKjqMY3c_CYf1Huu_oV9pEXgaAIxnfjn0Khh3klY7j6ZXdev-T_gGqqKEdg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1942734813</pqid></control><display><type>article</type><title>Artificial intelligence for breast cancer screening: Opportunity or hype?</title><source>ScienceDirect Freedom Collection</source><creator>Houssami, Nehmat ; Lee, Christoph I. ; Buist, Diana S.M. ; Tao, Dacheng</creator><creatorcontrib>Houssami, Nehmat ; Lee, Christoph I. ; Buist, Diana S.M. ; Tao, Dacheng</creatorcontrib><description>Interpretation of mammography for breast cancer (BC) screening can confer a mortality benefit through early BC detection, can miss a cancer that is present or fast growing, or can result in false-positives. Efforts to improve screening outcomes have mostly focused on intensifying imaging practices (double instead of single-reading, more frequent screens, or supplemental imaging) that may add substantial resource expenditures and harms associated with population screening. Less attention has been given to making mammography screening practice ‘smarter’ or more efficient. Artificial intelligence (AI) is capable of advanced learning using large complex datasets and has the potential to perform tasks such as image interpretation. With both highly-specific capabilities, and also possible un-intended (and poorly understood) consequences, this viewpoint considers the promise and current reality of AI in BC detection.</description><identifier>ISSN: 0960-9776</identifier><identifier>EISSN: 1532-3080</identifier><identifier>DOI: 10.1016/j.breast.2017.09.003</identifier><identifier>PMID: 28938172</identifier><language>eng</language><publisher>Netherlands: Elsevier Ltd</publisher><subject>Artificial intelligence ; Mammography ; Population screening</subject><ispartof>Breast (Edinburgh), 2017-12, Vol.36, p.31-33</ispartof><rights>2017 Elsevier Ltd</rights><rights>Copyright © 2017 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c362t-20728516728f5b3d942d7069cd6fae16e99d86c4a3e13fa3a8f4fa525f006e33</citedby><cites>FETCH-LOGICAL-c362t-20728516728f5b3d942d7069cd6fae16e99d86c4a3e13fa3a8f4fa525f006e33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28938172$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Houssami, Nehmat</creatorcontrib><creatorcontrib>Lee, Christoph I.</creatorcontrib><creatorcontrib>Buist, Diana S.M.</creatorcontrib><creatorcontrib>Tao, Dacheng</creatorcontrib><title>Artificial intelligence for breast cancer screening: Opportunity or hype?</title><title>Breast (Edinburgh)</title><addtitle>Breast</addtitle><description>Interpretation of mammography for breast cancer (BC) screening can confer a mortality benefit through early BC detection, can miss a cancer that is present or fast growing, or can result in false-positives. Efforts to improve screening outcomes have mostly focused on intensifying imaging practices (double instead of single-reading, more frequent screens, or supplemental imaging) that may add substantial resource expenditures and harms associated with population screening. Less attention has been given to making mammography screening practice ‘smarter’ or more efficient. Artificial intelligence (AI) is capable of advanced learning using large complex datasets and has the potential to perform tasks such as image interpretation. With both highly-specific capabilities, and also possible un-intended (and poorly understood) consequences, this viewpoint considers the promise and current reality of AI in BC detection.</description><subject>Artificial intelligence</subject><subject>Mammography</subject><subject>Population screening</subject><issn>0960-9776</issn><issn>1532-3080</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9kE1PwzAMhiMEYmPwDxDqkUuLk7RpwwE0TXxMmrTL7lGWOiPT1pakQ9q_J1OBIxdHsh77jR9CbilkFKh42GZrjzr0GQNaZiAzAH5GxrTgLOVQwTkZgxSQyrIUI3IVwhYAJBfVJRmxSvKKlmxM5lPfO-uM07vENT3udm6DjcHEtj4ZAhKjY8MnwXjExjWbx2TZda3vD43rj0nkPo4dPl-TC6t3AW9-3glZvb6sZu_pYvk2n00XqeGC9SmDklUFFbHaYs1rmbO6BCFNLaxGKlDKuhIm1xwpt5rryuZWF6ywAAI5n5D7YW3n288Dhl7tXTDx37rB9hAUjQtLnlf0hOYDanwbgkerOu_22h8VBXVyqLZqOFGdHCqQKjqMY3c_CYf1Huu_oV9pEXgaAIxnfjn0Khh3klY7j6ZXdev-T_gGqqKEdg</recordid><startdate>201712</startdate><enddate>201712</enddate><creator>Houssami, Nehmat</creator><creator>Lee, Christoph I.</creator><creator>Buist, Diana S.M.</creator><creator>Tao, Dacheng</creator><general>Elsevier Ltd</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>201712</creationdate><title>Artificial intelligence for breast cancer screening: Opportunity or hype?</title><author>Houssami, Nehmat ; Lee, Christoph I. ; Buist, Diana S.M. ; Tao, Dacheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c362t-20728516728f5b3d942d7069cd6fae16e99d86c4a3e13fa3a8f4fa525f006e33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Artificial intelligence</topic><topic>Mammography</topic><topic>Population screening</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Houssami, Nehmat</creatorcontrib><creatorcontrib>Lee, Christoph I.</creatorcontrib><creatorcontrib>Buist, Diana S.M.</creatorcontrib><creatorcontrib>Tao, Dacheng</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Breast (Edinburgh)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Houssami, Nehmat</au><au>Lee, Christoph I.</au><au>Buist, Diana S.M.</au><au>Tao, Dacheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Artificial intelligence for breast cancer screening: Opportunity or hype?</atitle><jtitle>Breast (Edinburgh)</jtitle><addtitle>Breast</addtitle><date>2017-12</date><risdate>2017</risdate><volume>36</volume><spage>31</spage><epage>33</epage><pages>31-33</pages><issn>0960-9776</issn><eissn>1532-3080</eissn><abstract>Interpretation of mammography for breast cancer (BC) screening can confer a mortality benefit through early BC detection, can miss a cancer that is present or fast growing, or can result in false-positives. Efforts to improve screening outcomes have mostly focused on intensifying imaging practices (double instead of single-reading, more frequent screens, or supplemental imaging) that may add substantial resource expenditures and harms associated with population screening. Less attention has been given to making mammography screening practice ‘smarter’ or more efficient. Artificial intelligence (AI) is capable of advanced learning using large complex datasets and has the potential to perform tasks such as image interpretation. With both highly-specific capabilities, and also possible un-intended (and poorly understood) consequences, this viewpoint considers the promise and current reality of AI in BC detection.</abstract><cop>Netherlands</cop><pub>Elsevier Ltd</pub><pmid>28938172</pmid><doi>10.1016/j.breast.2017.09.003</doi><tpages>3</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0960-9776
ispartof Breast (Edinburgh), 2017-12, Vol.36, p.31-33
issn 0960-9776
1532-3080
language eng
recordid cdi_proquest_miscellaneous_1942734813
source ScienceDirect Freedom Collection
subjects Artificial intelligence
Mammography
Population screening
title Artificial intelligence for breast cancer screening: Opportunity or hype?
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T23%3A01%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Artificial%20intelligence%20for%20breast%20cancer%20screening:%20Opportunity%20or%20hype?&rft.jtitle=Breast%20(Edinburgh)&rft.au=Houssami,%20Nehmat&rft.date=2017-12&rft.volume=36&rft.spage=31&rft.epage=33&rft.pages=31-33&rft.issn=0960-9776&rft.eissn=1532-3080&rft_id=info:doi/10.1016/j.breast.2017.09.003&rft_dat=%3Cproquest_cross%3E1942734813%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c362t-20728516728f5b3d942d7069cd6fae16e99d86c4a3e13fa3a8f4fa525f006e33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1942734813&rft_id=info:pmid/28938172&rfr_iscdi=true