Loading…

Evaluating predictive errors of a complex environmental model using a general linear model and least square means

A general linear model (GLM) was used to evaluate the deviation of predicted values from expected values for a complex environmental model. For this demonstration, we used the default level interface of the regional mercury cycling model (R-MCM) to simulate epilimnetic total mercury concentrations i...

Full description

Saved in:
Bibliographic Details
Published in:Ecological modelling 2005-08, Vol.186 (3), p.366-374
Main Authors: Knightes, Christopher D., Cyterski, Michael
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c376t-b26b81382df34e7b3e761421c76dc6bddd42663f7a9286a58e454bc9ac64cf683
cites cdi_FETCH-LOGICAL-c376t-b26b81382df34e7b3e761421c76dc6bddd42663f7a9286a58e454bc9ac64cf683
container_end_page 374
container_issue 3
container_start_page 366
container_title Ecological modelling
container_volume 186
creator Knightes, Christopher D.
Cyterski, Michael
description A general linear model (GLM) was used to evaluate the deviation of predicted values from expected values for a complex environmental model. For this demonstration, we used the default level interface of the regional mercury cycling model (R-MCM) to simulate epilimnetic total mercury concentrations in Vermont and New Hampshire lakes based on data gathered through the EPAs Regional Environmental Monitoring and Assessment Program (REMAP). The response variable for the GLM was defined as R-MCMs predictive error: the difference between observed mercury concentrations and modeled mercury concentrations in each lake. Least square means of the response variable are used as an estimate of the magnitude and significance of bias, i.e., a statistically discernable trend in predictive errors for a given lake type, e.g., acidic, stratified, or oligotrophic. Using our approach, we determined lake types where significant over-prediction and under-prediction of epilimnetic total mercury concentration was occurring, i.e., regions in parameter space where the model demonstrated significant bias was distinguished from regions where no significant bias existed. This technique is most effective for finding regions of parameter space where bias is significant. Drawing conclusions concerning regions that show no significant bias can be misleading. The significant interaction terms in the GLM demonstrated that addressing this problem using univariate statistical techniques would lead to a loss of important information.
doi_str_mv 10.1016/j.ecolmodel.2005.01.034
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_19427431</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0304380005000591</els_id><sourcerecordid>19427431</sourcerecordid><originalsourceid>FETCH-LOGICAL-c376t-b26b81382df34e7b3e761421c76dc6bddd42663f7a9286a58e454bc9ac64cf683</originalsourceid><addsrcrecordid>eNqFkE1rGzEQhkVpoW7S31Bd2ttu9GVpfQwhTQKBXJKzmJVmg4xWsqVdk_z7rmvTHnMSjJ53XuYh5AdnLWdcX21bdDmO2WNsBWPrlvGWSfWJrHhnRGOY0J_JikmmGtkx9pV8q3XLGOOiEyuyvz1AnGEK6ZXuCvrgpnBAiqXkUmkeKFCXx13EN4rpEEpOI6YJIv1bSOd6DAJ9xYRlmcaQEMr5E5KnEaFOtO5nKEhHhFQvyZcBYsXv5_eCvPy-fb65bx6f7h5urh8bJ42eml7ovuOyE36QCk0v0WiuBHdGe6d7770SWsvBwEZ0GtYdqrXq3QacVm7Qnbwgv057dyXvZ6yTHUN1GCMkzHO1fKOEUZIvoDmBruRaCw52V8II5d1yZo-K7db-U2yPii3jdlG8JH-eK6A6iEOB5EL9H9cbw41iC3d94nC59xCw2OoCJrfoLugm63P4sOsPrRmYPw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>19427431</pqid></control><display><type>article</type><title>Evaluating predictive errors of a complex environmental model using a general linear model and least square means</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Knightes, Christopher D. ; Cyterski, Michael</creator><creatorcontrib>Knightes, Christopher D. ; Cyterski, Michael</creatorcontrib><description>A general linear model (GLM) was used to evaluate the deviation of predicted values from expected values for a complex environmental model. For this demonstration, we used the default level interface of the regional mercury cycling model (R-MCM) to simulate epilimnetic total mercury concentrations in Vermont and New Hampshire lakes based on data gathered through the EPAs Regional Environmental Monitoring and Assessment Program (REMAP). The response variable for the GLM was defined as R-MCMs predictive error: the difference between observed mercury concentrations and modeled mercury concentrations in each lake. Least square means of the response variable are used as an estimate of the magnitude and significance of bias, i.e., a statistically discernable trend in predictive errors for a given lake type, e.g., acidic, stratified, or oligotrophic. Using our approach, we determined lake types where significant over-prediction and under-prediction of epilimnetic total mercury concentration was occurring, i.e., regions in parameter space where the model demonstrated significant bias was distinguished from regions where no significant bias existed. This technique is most effective for finding regions of parameter space where bias is significant. Drawing conclusions concerning regions that show no significant bias can be misleading. The significant interaction terms in the GLM demonstrated that addressing this problem using univariate statistical techniques would lead to a loss of important information.</description><identifier>ISSN: 0304-3800</identifier><identifier>EISSN: 1872-7026</identifier><identifier>DOI: 10.1016/j.ecolmodel.2005.01.034</identifier><identifier>CODEN: ECMODT</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Animal, plant and microbial ecology ; Biological and medical sciences ; Environmental ; Errors ; Evaluation ; Freshwater ; Fundamental and applied biological sciences. Psychology ; General aspects. Techniques ; General linear model ; Methods and techniques (sampling, tagging, trapping, modelling...)</subject><ispartof>Ecological modelling, 2005-08, Vol.186 (3), p.366-374</ispartof><rights>2005</rights><rights>2005 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c376t-b26b81382df34e7b3e761421c76dc6bddd42663f7a9286a58e454bc9ac64cf683</citedby><cites>FETCH-LOGICAL-c376t-b26b81382df34e7b3e761421c76dc6bddd42663f7a9286a58e454bc9ac64cf683</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=16971740$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Knightes, Christopher D.</creatorcontrib><creatorcontrib>Cyterski, Michael</creatorcontrib><title>Evaluating predictive errors of a complex environmental model using a general linear model and least square means</title><title>Ecological modelling</title><description>A general linear model (GLM) was used to evaluate the deviation of predicted values from expected values for a complex environmental model. For this demonstration, we used the default level interface of the regional mercury cycling model (R-MCM) to simulate epilimnetic total mercury concentrations in Vermont and New Hampshire lakes based on data gathered through the EPAs Regional Environmental Monitoring and Assessment Program (REMAP). The response variable for the GLM was defined as R-MCMs predictive error: the difference between observed mercury concentrations and modeled mercury concentrations in each lake. Least square means of the response variable are used as an estimate of the magnitude and significance of bias, i.e., a statistically discernable trend in predictive errors for a given lake type, e.g., acidic, stratified, or oligotrophic. Using our approach, we determined lake types where significant over-prediction and under-prediction of epilimnetic total mercury concentration was occurring, i.e., regions in parameter space where the model demonstrated significant bias was distinguished from regions where no significant bias existed. This technique is most effective for finding regions of parameter space where bias is significant. Drawing conclusions concerning regions that show no significant bias can be misleading. The significant interaction terms in the GLM demonstrated that addressing this problem using univariate statistical techniques would lead to a loss of important information.</description><subject>Animal, plant and microbial ecology</subject><subject>Biological and medical sciences</subject><subject>Environmental</subject><subject>Errors</subject><subject>Evaluation</subject><subject>Freshwater</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>General aspects. Techniques</subject><subject>General linear model</subject><subject>Methods and techniques (sampling, tagging, trapping, modelling...)</subject><issn>0304-3800</issn><issn>1872-7026</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNqFkE1rGzEQhkVpoW7S31Bd2ttu9GVpfQwhTQKBXJKzmJVmg4xWsqVdk_z7rmvTHnMSjJ53XuYh5AdnLWdcX21bdDmO2WNsBWPrlvGWSfWJrHhnRGOY0J_JikmmGtkx9pV8q3XLGOOiEyuyvz1AnGEK6ZXuCvrgpnBAiqXkUmkeKFCXx13EN4rpEEpOI6YJIv1bSOd6DAJ9xYRlmcaQEMr5E5KnEaFOtO5nKEhHhFQvyZcBYsXv5_eCvPy-fb65bx6f7h5urh8bJ42eml7ovuOyE36QCk0v0WiuBHdGe6d7770SWsvBwEZ0GtYdqrXq3QacVm7Qnbwgv057dyXvZ6yTHUN1GCMkzHO1fKOEUZIvoDmBruRaCw52V8II5d1yZo-K7db-U2yPii3jdlG8JH-eK6A6iEOB5EL9H9cbw41iC3d94nC59xCw2OoCJrfoLugm63P4sOsPrRmYPw</recordid><startdate>20050825</startdate><enddate>20050825</enddate><creator>Knightes, Christopher D.</creator><creator>Cyterski, Michael</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SN</scope><scope>7ST</scope><scope>7U6</scope><scope>C1K</scope><scope>F1W</scope><scope>H96</scope><scope>L.G</scope></search><sort><creationdate>20050825</creationdate><title>Evaluating predictive errors of a complex environmental model using a general linear model and least square means</title><author>Knightes, Christopher D. ; Cyterski, Michael</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c376t-b26b81382df34e7b3e761421c76dc6bddd42663f7a9286a58e454bc9ac64cf683</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Animal, plant and microbial ecology</topic><topic>Biological and medical sciences</topic><topic>Environmental</topic><topic>Errors</topic><topic>Evaluation</topic><topic>Freshwater</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>General aspects. Techniques</topic><topic>General linear model</topic><topic>Methods and techniques (sampling, tagging, trapping, modelling...)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Knightes, Christopher D.</creatorcontrib><creatorcontrib>Cyterski, Michael</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Ecology Abstracts</collection><collection>Environment Abstracts</collection><collection>Sustainability Science Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><jtitle>Ecological modelling</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Knightes, Christopher D.</au><au>Cyterski, Michael</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evaluating predictive errors of a complex environmental model using a general linear model and least square means</atitle><jtitle>Ecological modelling</jtitle><date>2005-08-25</date><risdate>2005</risdate><volume>186</volume><issue>3</issue><spage>366</spage><epage>374</epage><pages>366-374</pages><issn>0304-3800</issn><eissn>1872-7026</eissn><coden>ECMODT</coden><abstract>A general linear model (GLM) was used to evaluate the deviation of predicted values from expected values for a complex environmental model. For this demonstration, we used the default level interface of the regional mercury cycling model (R-MCM) to simulate epilimnetic total mercury concentrations in Vermont and New Hampshire lakes based on data gathered through the EPAs Regional Environmental Monitoring and Assessment Program (REMAP). The response variable for the GLM was defined as R-MCMs predictive error: the difference between observed mercury concentrations and modeled mercury concentrations in each lake. Least square means of the response variable are used as an estimate of the magnitude and significance of bias, i.e., a statistically discernable trend in predictive errors for a given lake type, e.g., acidic, stratified, or oligotrophic. Using our approach, we determined lake types where significant over-prediction and under-prediction of epilimnetic total mercury concentration was occurring, i.e., regions in parameter space where the model demonstrated significant bias was distinguished from regions where no significant bias existed. This technique is most effective for finding regions of parameter space where bias is significant. Drawing conclusions concerning regions that show no significant bias can be misleading. The significant interaction terms in the GLM demonstrated that addressing this problem using univariate statistical techniques would lead to a loss of important information.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.ecolmodel.2005.01.034</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0304-3800
ispartof Ecological modelling, 2005-08, Vol.186 (3), p.366-374
issn 0304-3800
1872-7026
language eng
recordid cdi_proquest_miscellaneous_19427431
source ScienceDirect Freedom Collection 2022-2024
subjects Animal, plant and microbial ecology
Biological and medical sciences
Environmental
Errors
Evaluation
Freshwater
Fundamental and applied biological sciences. Psychology
General aspects. Techniques
General linear model
Methods and techniques (sampling, tagging, trapping, modelling...)
title Evaluating predictive errors of a complex environmental model using a general linear model and least square means
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T13%3A05%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evaluating%20predictive%20errors%20of%20a%20complex%20environmental%20model%20using%20a%20general%20linear%20model%20and%20least%20square%20means&rft.jtitle=Ecological%20modelling&rft.au=Knightes,%20Christopher%20D.&rft.date=2005-08-25&rft.volume=186&rft.issue=3&rft.spage=366&rft.epage=374&rft.pages=366-374&rft.issn=0304-3800&rft.eissn=1872-7026&rft.coden=ECMODT&rft_id=info:doi/10.1016/j.ecolmodel.2005.01.034&rft_dat=%3Cproquest_cross%3E19427431%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c376t-b26b81382df34e7b3e761421c76dc6bddd42663f7a9286a58e454bc9ac64cf683%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=19427431&rft_id=info:pmid/&rfr_iscdi=true