Loading…
Neutral Silicon-Vacancy Center in Diamond: Spin Polarization and Lifetimes
We demonstrate optical spin polarization of the neutrally charged silicon-vacancy defect in diamond (SiV^{0}), an S=1 defect which emits with a zero-phonon line at 946 nm. The spin polarization is found to be most efficient under resonant excitation, but nonzero at below-resonant energies. We measur...
Saved in:
Published in: | Physical review letters 2017-09, Vol.119 (9), p.096402-096402, Article 096402 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We demonstrate optical spin polarization of the neutrally charged silicon-vacancy defect in diamond (SiV^{0}), an S=1 defect which emits with a zero-phonon line at 946 nm. The spin polarization is found to be most efficient under resonant excitation, but nonzero at below-resonant energies. We measure an ensemble spin coherence time T_{2}>100 μs at low-temperature, and a spin relaxation limit of T_{1}>25 s. Optical spin-state initialization around 946 nm allows independent initialization of SiV^{0} and NV^{-} within the same optically addressed volume, and SiV^{0} emits within the telecoms down-conversion band to 1550 nm: when combined with its high Debye-Waller factor, our initial results suggest that SiV^{0} is a promising candidate for a long-range quantum communication technology. |
---|---|
ISSN: | 0031-9007 1079-7114 |
DOI: | 10.1103/PhysRevLett.119.096402 |