Loading…
Probing Spinon Nodal Structures in Three-Dimensional Kitaev Spin Liquids
We propose that resonant inelastic x-ray scattering (RIXS) is an effective probe of the fractionalized excitations in three-dimensional (3D) Kitaev spin liquids. While the non-spin-conserving RIXS responses are dominated by the gauge-flux excitations and reproduce the inelastic-neutron-scattering re...
Saved in:
Published in: | Physical review letters 2017-09, Vol.119 (9), p.097202-097202, Article 097202 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We propose that resonant inelastic x-ray scattering (RIXS) is an effective probe of the fractionalized excitations in three-dimensional (3D) Kitaev spin liquids. While the non-spin-conserving RIXS responses are dominated by the gauge-flux excitations and reproduce the inelastic-neutron-scattering response, the spin-conserving (SC) RIXS response picks up the Majorana-fermion excitations and detects whether they are gapless at Weyl points, nodal lines, or Fermi surfaces. As a signature of symmetry fractionalization, the SC RIXS response is suppressed around the Γ point. On a technical level, we calculate the exact SC RIXS responses of the Kitaev models on the hyperhoneycomb, stripyhoneycomb, hyperhexagon, and hyperoctagon lattices, arguing that our main results also apply to generic 3D Kitaev spin liquids beyond these exactly solvable models. |
---|---|
ISSN: | 0031-9007 1079-7114 |
DOI: | 10.1103/physrevlett.119.097202 |