Loading…

Sorption processes affecting arsenic solubility in oxidized surface sediments from Tulare Lake Bed, California

Elevated concentrations of arsenic (As) in shallow groundwater in Tulare Basin pose an environmental risk because of the carcinogenic properties of As and the potential for its migration to deep aquifers that could serve as a future drinking water source. Adsorption and desorption are hypothesized t...

Full description

Saved in:
Bibliographic Details
Published in:Chemical geology 2006-04, Vol.228 (1), p.33-43
Main Authors: Gao, S., Goldberg, S., Herbel, M.J., Chalmers, A.T., Fujii, R., Tanji, K.K.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Elevated concentrations of arsenic (As) in shallow groundwater in Tulare Basin pose an environmental risk because of the carcinogenic properties of As and the potential for its migration to deep aquifers that could serve as a future drinking water source. Adsorption and desorption are hypothesized to be the major processes controlling As solubility in oxidized surface sediments where arsenate [As(V)] is dominant. This study examined the relationship between sorption processes and arsenic solubility in shallow sediments from the dry Tulare Lake bed by determining sorption isotherms, pH effect on solubility, and desorption-readsorption behavior (hysteresis), and by using a surface complexation model to describe sorption. The sediments showed a high capacity to adsorb As(V). Estimates of the maximum adsorption capacity were 92 mg As kg − 1 at pH 7.5 and 70 mg As kg − 1 at pH 8.5 obtained using the Langmuir adsorption isotherm. Soluble arsenic [> 97% As(V)] did not increase dramatically until above pH 10. In the native pH range (7.5–8.5), soluble As concentrations were close to the lowest, indicating that As was strongly retained on the sediment. A surface complexation model, the constant capacitance model, was able to provide a simultaneous fit to both adsorption isotherms (pH 7.5 and 8.5) and the adsorption envelope (pH effect on soluble As), although the data ranges are one order of magnitude different. A hysteresis phenomenon between As adsorbed on the sediment and As in solution phase was observed in the desorption–readsorption processes and differs from conventional hysteresis observed in adsorption–desorption processes. The cause is most likely due to modification of adsorbent surfaces in sediment samples upon extensive extractions (or desorption). The significance of the hysteresis phenomenon in affecting As solubility and mobility may be better understood by further microscopic studies of As interaction mechanisms with sediments subjected to extensive leaching in natural environments.
ISSN:0009-2541
1872-6836
DOI:10.1016/j.chemgeo.2005.11.017