Loading…

Osteogenic apatite particles by sol-gel assisted electrospraying

Electrospraying has tremendous potential to prepare submicron to nano size ceramic particles with novel properties. In this study, a sol-gel assisted electrospraying has been used to synthesise phase controlled apatite (hydroxyapatite, HA and calcium deficient hydroxyapatite, CDHA) particles. Variat...

Full description

Saved in:
Bibliographic Details
Published in:Journal of biomedical materials research. Part B, Applied biomaterials Applied biomaterials, 2018-07, Vol.106 (5), p.1941-1954
Main Authors: Chakrapani Venkatesan, Yogeshwar, Sampath Kumar, T S, Raj, Deepa K, Kumary, T V
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Electrospraying has tremendous potential to prepare submicron to nano size ceramic particles with novel properties. In this study, a sol-gel assisted electrospraying has been used to synthesise phase controlled apatite (hydroxyapatite, HA and calcium deficient hydroxyapatite, CDHA) particles. Variation in particle size was also achieved by controlling the process parameters. The particles were non cytotoxic, induced proliferation of osteoblast-like cells (HOS) and internalised by the cells. Increased alkaline phosphatase, collagen and calcium deposition confirmed the mineralisation of cells. Expression of osteopontin, osteocalcin and alkaline phosphatase genes further ascertained that the particles promoted osteogenic commitment of the rat bone marrow-derived mesenchymal stem cells (rBMSCs). The particles also showed better loading and release of tetracycline drug than accelerated microwave synthesised apatite particles. The methodology for synthesis of ceramic particles may have avenues for a wide range of biomedical applications. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 106B: 1941-1954, 2018.
ISSN:1552-4973
1552-4981
DOI:10.1002/jbm.b.34013