Loading…

3D-printed tracheoesophageal puncture and prosthesis placement simulator

A tracheoesophageal prosthesis (TEP) allows for speech after total laryngectomy. However, TEP placement is technically challenging, requiring a coordinated series of steps. Surgical simulators improve technical skills and reduce operative time. We hypothesize that a reusable 3-dimensional (3D)-print...

Full description

Saved in:
Bibliographic Details
Published in:American journal of otolaryngology 2018-01, Vol.39 (1), p.37-40
Main Authors: Barber, Samuel R., Kozin, Elliott D., Naunheim, Matthew R., Sethi, Rosh, Remenschneider, Aaron K., Deschler, Daniel G.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c390t-c331b8469b6414ea03134f987e0695dd51cc47adefc7017b8591ace46656aebf3
cites cdi_FETCH-LOGICAL-c390t-c331b8469b6414ea03134f987e0695dd51cc47adefc7017b8591ace46656aebf3
container_end_page 40
container_issue 1
container_start_page 37
container_title American journal of otolaryngology
container_volume 39
creator Barber, Samuel R.
Kozin, Elliott D.
Naunheim, Matthew R.
Sethi, Rosh
Remenschneider, Aaron K.
Deschler, Daniel G.
description A tracheoesophageal prosthesis (TEP) allows for speech after total laryngectomy. However, TEP placement is technically challenging, requiring a coordinated series of steps. Surgical simulators improve technical skills and reduce operative time. We hypothesize that a reusable 3-dimensional (3D)-printed TEP simulator will facilitate comprehension and rehearsal prior to actual procedures. The simulator was designed using Fusion360 (Autodesk, San Rafael, CA). Components were 3D-printed in-house using an Ultimaker 2+ (Ultimaker, Netherlands). Squid simulated the common tracheoesophageal wall. A Blom-Singer TEP (InHealth Technologies, Carpinteria, CA) replicated placement. Subjects watched an instructional video and completed pre- and post-simulation surveys. The simulator comprised 3D-printed parts: the esophageal lumen and superficial stoma. Squid was placed between components. Ten trainees participated. Significant differences existed between junior and senior residents with surveys regarding anatomy knowledge(p
doi_str_mv 10.1016/j.amjoto.2017.08.001
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1945717173</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0196070917303435</els_id><sourcerecordid>1945717173</sourcerecordid><originalsourceid>FETCH-LOGICAL-c390t-c331b8469b6414ea03134f987e0695dd51cc47adefc7017b8591ace46656aebf3</originalsourceid><addsrcrecordid>eNp9kE2L1jAQgIMo7uvqPxApePHSOvPmo8lFkFV3hQUvCt5Cmk59W9qmJqngvzfLu3rYgwzMXJ75ehh7idAgoHo7NW6ZQg7NEbBtQDcA-IgdUPJjrVF_f8wOgEbV0IK5YM9SmgCACy6fsoujNkpIeTywG_6h3uK4ZuqrHJ0_UaAUtpP7QW6utn31eY9UubWvthhSPlEaU7XNztNCa67SuOyzyyE-Z08GNyd6cV8v2bdPH79e3dS3X64_X72_rT03kEvm2GmhTKcECnLAkYvB6JZAGdn3Er0Xretp8G35q9PSYNkllJLKUTfwS_bmPLec83OnlO0yJk_z7FYKe7JohGyxBC_o6wfoFPa4lusKpbkQgBoKJc6UL_-lSIMtPhYXf1sEe2faTvZs2t6ZtqBtMV3aXt0P37uF-n9Nf9UW4N0ZoGLj10jRJj_S6qkfI_ls-zD-f8MfRjaRJQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1983440180</pqid></control><display><type>article</type><title>3D-printed tracheoesophageal puncture and prosthesis placement simulator</title><source>ScienceDirect Journals</source><creator>Barber, Samuel R. ; Kozin, Elliott D. ; Naunheim, Matthew R. ; Sethi, Rosh ; Remenschneider, Aaron K. ; Deschler, Daniel G.</creator><creatorcontrib>Barber, Samuel R. ; Kozin, Elliott D. ; Naunheim, Matthew R. ; Sethi, Rosh ; Remenschneider, Aaron K. ; Deschler, Daniel G.</creatorcontrib><description>A tracheoesophageal prosthesis (TEP) allows for speech after total laryngectomy. However, TEP placement is technically challenging, requiring a coordinated series of steps. Surgical simulators improve technical skills and reduce operative time. We hypothesize that a reusable 3-dimensional (3D)-printed TEP simulator will facilitate comprehension and rehearsal prior to actual procedures. The simulator was designed using Fusion360 (Autodesk, San Rafael, CA). Components were 3D-printed in-house using an Ultimaker 2+ (Ultimaker, Netherlands). Squid simulated the common tracheoesophageal wall. A Blom-Singer TEP (InHealth Technologies, Carpinteria, CA) replicated placement. Subjects watched an instructional video and completed pre- and post-simulation surveys. The simulator comprised 3D-printed parts: the esophageal lumen and superficial stoma. Squid was placed between components. Ten trainees participated. Significant differences existed between junior and senior residents with surveys regarding anatomy knowledge(p&lt;0.05), technical details(p&lt;0.01), and equipment setup(p&lt;0.01). Subjects agreed that simulation felt accurate, and rehearsal raised confidence in future procedures. A 3D-printed TEP simulator is feasible for surgical training. Simulation involving multiple steps may accelerate technical skills and improve education.</description><identifier>ISSN: 0196-0709</identifier><identifier>EISSN: 1532-818X</identifier><identifier>DOI: 10.1016/j.amjoto.2017.08.001</identifier><identifier>PMID: 28964552</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>3D printing ; Adult ; Catheters ; Clinical Competence ; Design ; Education, Medical, Graduate - methods ; Educational Measurement ; Endoscopy ; Esophagoscopy - methods ; Esophagus ; Esophagus - surgery ; Female ; Humans ; Internship and Residency - methods ; Laryngeal Neoplasms - surgery ; Laryngectomy - methods ; Larynx, Artificial ; Male ; Neck ; Otolaryngology ; Otolaryngology - education ; Pilot Projects ; Placement ; Printing, Three-Dimensional ; Prostheses ; Prosthesis Implantation - methods ; Punctures ; Residency education ; Simulation ; Simulation Training - methods ; Simulators ; Singers ; Skills ; Software ; Squid ; Surgery ; Three dimensional printing ; Trachea - surgery ; Tracheoesophageal puncture ; United States</subject><ispartof>American journal of otolaryngology, 2018-01, Vol.39 (1), p.37-40</ispartof><rights>2017 Elsevier Inc.</rights><rights>Copyright © 2017 Elsevier Inc. All rights reserved.</rights><rights>Copyright Elsevier Limited 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c390t-c331b8469b6414ea03134f987e0695dd51cc47adefc7017b8591ace46656aebf3</citedby><cites>FETCH-LOGICAL-c390t-c331b8469b6414ea03134f987e0695dd51cc47adefc7017b8591ace46656aebf3</cites><orcidid>0000-0001-5186-0471</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28964552$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Barber, Samuel R.</creatorcontrib><creatorcontrib>Kozin, Elliott D.</creatorcontrib><creatorcontrib>Naunheim, Matthew R.</creatorcontrib><creatorcontrib>Sethi, Rosh</creatorcontrib><creatorcontrib>Remenschneider, Aaron K.</creatorcontrib><creatorcontrib>Deschler, Daniel G.</creatorcontrib><title>3D-printed tracheoesophageal puncture and prosthesis placement simulator</title><title>American journal of otolaryngology</title><addtitle>Am J Otolaryngol</addtitle><description>A tracheoesophageal prosthesis (TEP) allows for speech after total laryngectomy. However, TEP placement is technically challenging, requiring a coordinated series of steps. Surgical simulators improve technical skills and reduce operative time. We hypothesize that a reusable 3-dimensional (3D)-printed TEP simulator will facilitate comprehension and rehearsal prior to actual procedures. The simulator was designed using Fusion360 (Autodesk, San Rafael, CA). Components were 3D-printed in-house using an Ultimaker 2+ (Ultimaker, Netherlands). Squid simulated the common tracheoesophageal wall. A Blom-Singer TEP (InHealth Technologies, Carpinteria, CA) replicated placement. Subjects watched an instructional video and completed pre- and post-simulation surveys. The simulator comprised 3D-printed parts: the esophageal lumen and superficial stoma. Squid was placed between components. Ten trainees participated. Significant differences existed between junior and senior residents with surveys regarding anatomy knowledge(p&lt;0.05), technical details(p&lt;0.01), and equipment setup(p&lt;0.01). Subjects agreed that simulation felt accurate, and rehearsal raised confidence in future procedures. A 3D-printed TEP simulator is feasible for surgical training. Simulation involving multiple steps may accelerate technical skills and improve education.</description><subject>3D printing</subject><subject>Adult</subject><subject>Catheters</subject><subject>Clinical Competence</subject><subject>Design</subject><subject>Education, Medical, Graduate - methods</subject><subject>Educational Measurement</subject><subject>Endoscopy</subject><subject>Esophagoscopy - methods</subject><subject>Esophagus</subject><subject>Esophagus - surgery</subject><subject>Female</subject><subject>Humans</subject><subject>Internship and Residency - methods</subject><subject>Laryngeal Neoplasms - surgery</subject><subject>Laryngectomy - methods</subject><subject>Larynx, Artificial</subject><subject>Male</subject><subject>Neck</subject><subject>Otolaryngology</subject><subject>Otolaryngology - education</subject><subject>Pilot Projects</subject><subject>Placement</subject><subject>Printing, Three-Dimensional</subject><subject>Prostheses</subject><subject>Prosthesis Implantation - methods</subject><subject>Punctures</subject><subject>Residency education</subject><subject>Simulation</subject><subject>Simulation Training - methods</subject><subject>Simulators</subject><subject>Singers</subject><subject>Skills</subject><subject>Software</subject><subject>Squid</subject><subject>Surgery</subject><subject>Three dimensional printing</subject><subject>Trachea - surgery</subject><subject>Tracheoesophageal puncture</subject><subject>United States</subject><issn>0196-0709</issn><issn>1532-818X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kE2L1jAQgIMo7uvqPxApePHSOvPmo8lFkFV3hQUvCt5Cmk59W9qmJqngvzfLu3rYgwzMXJ75ehh7idAgoHo7NW6ZQg7NEbBtQDcA-IgdUPJjrVF_f8wOgEbV0IK5YM9SmgCACy6fsoujNkpIeTywG_6h3uK4ZuqrHJ0_UaAUtpP7QW6utn31eY9UubWvthhSPlEaU7XNztNCa67SuOyzyyE-Z08GNyd6cV8v2bdPH79e3dS3X64_X72_rT03kEvm2GmhTKcECnLAkYvB6JZAGdn3Er0Xretp8G35q9PSYNkllJLKUTfwS_bmPLec83OnlO0yJk_z7FYKe7JohGyxBC_o6wfoFPa4lusKpbkQgBoKJc6UL_-lSIMtPhYXf1sEe2faTvZs2t6ZtqBtMV3aXt0P37uF-n9Nf9UW4N0ZoGLj10jRJj_S6qkfI_ls-zD-f8MfRjaRJQ</recordid><startdate>201801</startdate><enddate>201801</enddate><creator>Barber, Samuel R.</creator><creator>Kozin, Elliott D.</creator><creator>Naunheim, Matthew R.</creator><creator>Sethi, Rosh</creator><creator>Remenschneider, Aaron K.</creator><creator>Deschler, Daniel G.</creator><general>Elsevier Inc</general><general>Elsevier Limited</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7QR</scope><scope>7TK</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>NAPCQ</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-5186-0471</orcidid></search><sort><creationdate>201801</creationdate><title>3D-printed tracheoesophageal puncture and prosthesis placement simulator</title><author>Barber, Samuel R. ; Kozin, Elliott D. ; Naunheim, Matthew R. ; Sethi, Rosh ; Remenschneider, Aaron K. ; Deschler, Daniel G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c390t-c331b8469b6414ea03134f987e0695dd51cc47adefc7017b8591ace46656aebf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>3D printing</topic><topic>Adult</topic><topic>Catheters</topic><topic>Clinical Competence</topic><topic>Design</topic><topic>Education, Medical, Graduate - methods</topic><topic>Educational Measurement</topic><topic>Endoscopy</topic><topic>Esophagoscopy - methods</topic><topic>Esophagus</topic><topic>Esophagus - surgery</topic><topic>Female</topic><topic>Humans</topic><topic>Internship and Residency - methods</topic><topic>Laryngeal Neoplasms - surgery</topic><topic>Laryngectomy - methods</topic><topic>Larynx, Artificial</topic><topic>Male</topic><topic>Neck</topic><topic>Otolaryngology</topic><topic>Otolaryngology - education</topic><topic>Pilot Projects</topic><topic>Placement</topic><topic>Printing, Three-Dimensional</topic><topic>Prostheses</topic><topic>Prosthesis Implantation - methods</topic><topic>Punctures</topic><topic>Residency education</topic><topic>Simulation</topic><topic>Simulation Training - methods</topic><topic>Simulators</topic><topic>Singers</topic><topic>Skills</topic><topic>Software</topic><topic>Squid</topic><topic>Surgery</topic><topic>Three dimensional printing</topic><topic>Trachea - surgery</topic><topic>Tracheoesophageal puncture</topic><topic>United States</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Barber, Samuel R.</creatorcontrib><creatorcontrib>Kozin, Elliott D.</creatorcontrib><creatorcontrib>Naunheim, Matthew R.</creatorcontrib><creatorcontrib>Sethi, Rosh</creatorcontrib><creatorcontrib>Remenschneider, Aaron K.</creatorcontrib><creatorcontrib>Deschler, Daniel G.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>American journal of otolaryngology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Barber, Samuel R.</au><au>Kozin, Elliott D.</au><au>Naunheim, Matthew R.</au><au>Sethi, Rosh</au><au>Remenschneider, Aaron K.</au><au>Deschler, Daniel G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>3D-printed tracheoesophageal puncture and prosthesis placement simulator</atitle><jtitle>American journal of otolaryngology</jtitle><addtitle>Am J Otolaryngol</addtitle><date>2018-01</date><risdate>2018</risdate><volume>39</volume><issue>1</issue><spage>37</spage><epage>40</epage><pages>37-40</pages><issn>0196-0709</issn><eissn>1532-818X</eissn><abstract>A tracheoesophageal prosthesis (TEP) allows for speech after total laryngectomy. However, TEP placement is technically challenging, requiring a coordinated series of steps. Surgical simulators improve technical skills and reduce operative time. We hypothesize that a reusable 3-dimensional (3D)-printed TEP simulator will facilitate comprehension and rehearsal prior to actual procedures. The simulator was designed using Fusion360 (Autodesk, San Rafael, CA). Components were 3D-printed in-house using an Ultimaker 2+ (Ultimaker, Netherlands). Squid simulated the common tracheoesophageal wall. A Blom-Singer TEP (InHealth Technologies, Carpinteria, CA) replicated placement. Subjects watched an instructional video and completed pre- and post-simulation surveys. The simulator comprised 3D-printed parts: the esophageal lumen and superficial stoma. Squid was placed between components. Ten trainees participated. Significant differences existed between junior and senior residents with surveys regarding anatomy knowledge(p&lt;0.05), technical details(p&lt;0.01), and equipment setup(p&lt;0.01). Subjects agreed that simulation felt accurate, and rehearsal raised confidence in future procedures. A 3D-printed TEP simulator is feasible for surgical training. Simulation involving multiple steps may accelerate technical skills and improve education.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>28964552</pmid><doi>10.1016/j.amjoto.2017.08.001</doi><tpages>4</tpages><orcidid>https://orcid.org/0000-0001-5186-0471</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0196-0709
ispartof American journal of otolaryngology, 2018-01, Vol.39 (1), p.37-40
issn 0196-0709
1532-818X
language eng
recordid cdi_proquest_miscellaneous_1945717173
source ScienceDirect Journals
subjects 3D printing
Adult
Catheters
Clinical Competence
Design
Education, Medical, Graduate - methods
Educational Measurement
Endoscopy
Esophagoscopy - methods
Esophagus
Esophagus - surgery
Female
Humans
Internship and Residency - methods
Laryngeal Neoplasms - surgery
Laryngectomy - methods
Larynx, Artificial
Male
Neck
Otolaryngology
Otolaryngology - education
Pilot Projects
Placement
Printing, Three-Dimensional
Prostheses
Prosthesis Implantation - methods
Punctures
Residency education
Simulation
Simulation Training - methods
Simulators
Singers
Skills
Software
Squid
Surgery
Three dimensional printing
Trachea - surgery
Tracheoesophageal puncture
United States
title 3D-printed tracheoesophageal puncture and prosthesis placement simulator
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T12%3A14%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=3D-printed%20tracheoesophageal%20puncture%20and%20prosthesis%20placement%20simulator&rft.jtitle=American%20journal%20of%20otolaryngology&rft.au=Barber,%20Samuel%20R.&rft.date=2018-01&rft.volume=39&rft.issue=1&rft.spage=37&rft.epage=40&rft.pages=37-40&rft.issn=0196-0709&rft.eissn=1532-818X&rft_id=info:doi/10.1016/j.amjoto.2017.08.001&rft_dat=%3Cproquest_cross%3E1945717173%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c390t-c331b8469b6414ea03134f987e0695dd51cc47adefc7017b8591ace46656aebf3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1983440180&rft_id=info:pmid/28964552&rfr_iscdi=true