Loading…

The Aldosterone Receptor Antagonist Eplerenone Inhibits Isoproterenol-Induced Collagen-I and 11β-HSD1 Expression in Rat Cardiac Fibroblasts and the Left Ventricle

β-Adrenergic receptor (β-AR)-induction of collagen-I synthesis is partially mediated by the cardiac mineralocorticoid receptor (MR) system. However, it remains unclear whether the selective MR antagonist, eplerenone, inhibits collagen-I synthesis induced by β-AR stimulation. We investigated the effe...

Full description

Saved in:
Bibliographic Details
Published in:Biological & pharmaceutical bulletin 2017/10/01, Vol.40(10), pp.1716-1723
Main Authors: Hori, Yasutomo, Touei, Daisuke, Saitoh, Ryuta, Yamagishi, Maki, Kanai, Kazutaka, Hoshi, Fumio, Itoh, Naoyuki
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:β-Adrenergic receptor (β-AR)-induction of collagen-I synthesis is partially mediated by the cardiac mineralocorticoid receptor (MR) system. However, it remains unclear whether the selective MR antagonist, eplerenone, inhibits collagen-I synthesis induced by β-AR stimulation. We investigated the effects of eplerenone on the responses to a non-selective β-AR agonist, isoproterenol, which induced collagen-I synthesis in primary cardiac fibroblasts (CFs) and the left ventricle. mRNAs encoding the MR and 11β-hydroxysteroid dehydrogenase type I (11β-HSD1) were evident in the left ventricle and primary CFs. mRNAs encoding the CYP family 11 subfamily B member 2 (CYP11-B2) were not detected, even after isoproterenol treatment. In vivo, isoproterenol induced collagenous fiber accumulation in the left ventricle. The phosphorylation of extracellular signal-regulated kinase 1/2 (ERK1/2), 11β-HSD1 levels, and mRNA/protein levels of collagen-I increased upon exposure to isoproterenol, but these increases were inhibited by eplerenone co-treatment. In primary CFs, isoproterenol increased the phosphorylation of ERK1/2 and the expression levels of both 11β-HSD1 and collagen-I; these isoproterenol-attributable effects were inhibited by co-treatment with eplerenone and PD98059, a specific inhibitor of mitogen-activated protein kinase/ERK kinase activity. The results suggest that 11β-HSD1 but not CYP11-B2 is expressed in primary CFs. Eplerenone inhibited isoproterenol-induced ERK1/2 phosphorylation and expression of 11β-HSD1 and collagen-I in primary CFs, as well as the progression of cardiac fibrosis in the left ventricle. Therefore, eplerenone inhibited the isoproterenol-induced increases in 11β-HSD1 and collagen-I expression in primary CFs, and progression of cardiac fibrosis in the left ventricle.
ISSN:0918-6158
1347-5215
DOI:10.1248/bpb.b17-00291