Loading…
Corrigendum - What's happening in Monterey Bay on seasonal to interdecadal time [Continental Shelf Research, 2005, 25(10): 1159-1193]
Daily observations of sea-surface temperature (SST) have been acquired at the southern end of Monterey Bay in Pacific Grove, California since 1919. It is one of the longest oceanographic records off the west coast of North America. The record is examined to determine the major sources of variability...
Saved in:
Published in: | Continental shelf research 2005-01, Vol.25 (14), p.1784-1785 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Daily observations of sea-surface temperature (SST) have been acquired at the southern end of Monterey Bay in Pacific Grove, California since 1919. It is one of the longest oceanographic records off the west coast of North America. The record is examined to determine the major sources of variability in Monterey Bay and beyond, on time scales from seasonal to interdecadal. On seasonal time scales, the spring transition to coastal upwelling, often a major event along the coast of central California, is not well-expressed inside the bay but is detectable, occurring, on average, between mid-March and mid-April. The onset of the Davidson Current in Monterey Bay is well-defined, occurring, on average, in mid-October, plus or minus 2-3 weeks. Intraseasonal changes also occur during the spring and summer that may correspond to intrusions of warmer offshore waters into Monterey Bay. Intraseasonal oscillations with periods in the range of 40-50 days occur in Monterey Bay, but compared to their signature along the open coast, their event-like behavior is modified. The annual cycle of surface temperature in Monterey Bay is asymmetric with seasonal warming occurring during the spring and summer, and cooling during the fall. This asymmetry is primarily due to the net surface heat exchange which is positive for most of the year, and, to a lesser extent, the influence cold upwelled waters that are advected into the bay during the spring and summer, observations supported by a simple model that combines both the net surface heat exchange and thermal advection. On interannual time scales, the influence of El Nino warming events is strong. A comparison with the Northern Oscillation Index (NOI) using Singular Spectrum Analysis (SSA), shows that the El Nino signal is often as strong in SST at Pacific Grove as it is in the NOI. On interdecadal time scales, the influence of the Pacific Decadal Oscillation (PDO) is also relatively strong in Monterey Bay, again based on SSA. The integrated anomaly was calculated from the record and reveals regime shifts in Monterey Bay that occurred in 1929, an event that was apparently regional in scale, reflecting a transition from unusually cold to warmer conditions, and the regime change in the PDO that occurred in 1976. Each regime change can be approximated by a step-wise increase in temperature. Finally, linear trends were estimated for the entire record (~+0.01 degree C/year), and for the 72-year period from 1930 to 2001 (+0.0042 degree C/ |
---|---|
ISSN: | 0278-4343 |