Loading…

Dual-Mode Electronic Skin with Integrated Tactile Sensing and Visualized Injury Warning

Mimicking the pressure-sensing behavior of biological skins using electronic devices has profound implications for prosthetics and medicine. The developed electronic skins based on single response mode for pressure sensing suffer from a rapid decrease in sensitivity with the increase of pressure. Th...

Full description

Saved in:
Bibliographic Details
Published in:ACS applied materials & interfaces 2017-10, Vol.9 (42), p.37493-37500
Main Authors: Zhang, Yanli, Fang, Yunsheng, Li, Jia, Zhou, Qihao, Xiao, Yongjun, Zhang, Kui, Luo, Beibei, Zhou, Jun, Hu, Bin
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Mimicking the pressure-sensing behavior of biological skins using electronic devices has profound implications for prosthetics and medicine. The developed electronic skins based on single response mode for pressure sensing suffer from a rapid decrease in sensitivity with the increase of pressure. Their highly sensitive range covers a narrow part of tolerable pressure range of the human skin and has a weak response to the injurious high pressures. Herein, inspired by a bioluminescent jellyfish, we develop an electronic skin with dual-mode response characteristics, which is able to quantify and map the static and dynamic pressures by combining electrical and optical responses. The electronic skin shows notable changes in capacitance in the low-pressure regime and can emit bright luminescence in the high-pressure regime, which, respectively, imitates the functions of the mechanoreceptors and nociceptors in the biological skin, enabling it to sense gentle tactile and injurious pressure with sensitivities up to 0.66 and 0.044 kPa–1, respectively. The complementary highly sensitive sensing ranges of the electronic skin realize a reliable perception to different levels of pressure, and its mechanically robust and stretchable properties may find a wide range of applications in intelligent robots.
ISSN:1944-8244
1944-8252
DOI:10.1021/acsami.7b13016