Loading…

The Dorsal Attention Network Reflects Both Encoding Load and Top–down Control during Working Memory

The dorsal attention network is consistently involved in verbal and visual working memory (WM) tasks and has been associated with task-related, top–down control of attention. At the same time, WM capacity has been shown to depend on the amount of information that can be encoded in the focus of atten...

Full description

Saved in:
Bibliographic Details
Published in:Journal of cognitive neuroscience 2018-02, Vol.30 (2), p.144-159
Main Authors: Majerus, Steve, Péters, Frédéric, Bouffier, Marion, Cowan, Nelson, Phillips, Christophe
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The dorsal attention network is consistently involved in verbal and visual working memory (WM) tasks and has been associated with task-related, top–down control of attention. At the same time, WM capacity has been shown to depend on the amount of information that can be encoded in the focus of attention independently of top–down strategic control. We examined the role of the dorsal attention network in encoding load and top–down memory control during WM by manipulating encoding load and memory control requirements during a short-term probe recognition task for sequences of auditory (digits, letters) or visual (lines, unfamiliar faces) stimuli. Encoding load was manipulated by presenting sequences with small or large sets of memoranda while maintaining the amount of sensory stimuli constant. Top–down control was manipulated by instructing participants to passively maintain all stimuli or to selectively maintain stimuli from a predefined category. By using ROI and searchlight multivariate analysis strategies, we observed that the dorsal attention network encoded information for both load and control conditions in verbal and visuospatial modalities. Decoding of load conditions was in addition observed in modality-specific sensory cortices. These results highlight the complexity of the role of the dorsal attention network in WM by showing that this network supports both quantitative and qualitative aspects of attention during WM encoding, and this is in a partially modality-specific manner.
ISSN:0898-929X
1530-8898
1530-8898
DOI:10.1162/jocn_a_01195