Loading…

Facile Synthesis of Composition‐Controlled Graphene‐Supported PtPd Alloy Nanocatalysts and Their Applications in Methanol Electro‐Oxidation and Lithium‐Oxygen Batteries

A new and simple approach is reported for the synthesis of uniformly dispersed PtPd alloy nanocatalysts supported on graphene nanoplatelets (GNPs) (PtPd‐GNPs) through the introduction of bifunctional materials, which can modify the GNP surface and simultaneously reduce metal ions. With the use of po...

Full description

Saved in:
Bibliographic Details
Published in:Chemistry : a European journal 2017-12, Vol.23 (67), p.17136-17143
Main Authors: Ye, Seong Ji, Bui, Hieu Trung, Kim, Young Yun, Liao, Kin, Cho, Kyeong Min, Jung, Hee‐Tae, Kang, Yongku, Kim, Do Youb, Park, O Ok
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c4106-29e50323143960a939a4a05e939c00c3f6dc07a8f8ead9c227b6e8232d8bd0883
cites cdi_FETCH-LOGICAL-c4106-29e50323143960a939a4a05e939c00c3f6dc07a8f8ead9c227b6e8232d8bd0883
container_end_page 17143
container_issue 67
container_start_page 17136
container_title Chemistry : a European journal
container_volume 23
creator Ye, Seong Ji
Bui, Hieu Trung
Kim, Young Yun
Liao, Kin
Cho, Kyeong Min
Jung, Hee‐Tae
Kang, Yongku
Kim, Do Youb
Park, O Ok
description A new and simple approach is reported for the synthesis of uniformly dispersed PtPd alloy nanocatalysts supported on graphene nanoplatelets (GNPs) (PtPd‐GNPs) through the introduction of bifunctional materials, which can modify the GNP surface and simultaneously reduce metal ions. With the use of poly(4‐styrenesulfonic acid), poly(vinyl pyrrolidone), poly(diallyldimethylammonium chloride), and poly(vinyl alcohol) as bifunctional materials, PtPd‐GNPs can be produced through a procedure that is far simpler than previously reported methods. The as‐prepared nanocrystals on GNPs clearly exhibit uniform PtPd alloy structures of around 2 nm in size, which are strongly anchored and well distributed on the GNP sheets. The Pt/Pd atomic ratio and loading density of the nanocrystals on the GNPs are controlled easily by changing the metal precursor feed ratio and the mass ratio of GNP to the metal precursor, respectively. As a result of the synergism between Pt and Pd, the as‐prepared PtPd‐GNPs exhibit markedly enhanced electrocatalytic performance during methanol electro‐oxidation compared with monometallic Pt‐GNP or commercially available Pt/C. Furthermore, the PtPd‐GNP nanocatalysts also show greatly enhanced catalytic activity toward the oxygen reduction/evolution reaction in a lithium‐oxygen (Li‐O2) process, resulting in greatly improved cycling stability of a Li‐O2 battery. Alloy‐enhanced electrocatalysis: A facile strategy is presented for the preparation of composition‐controlled PtPd alloy nanocatalysts on graphene through the introduction of bifunctional materials, which can be used to modify the graphene surface and simultaneously reduce metal ions (see figure). The PtPd‐GNP nanocatalysts show enhanced catalytic activity toward the oxygen reduction/evolution reaction, leading to improved cycling stability in Li‐O2 batteries.
doi_str_mv 10.1002/chem.201703946
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1948756350</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1970573930</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4106-29e50323143960a939a4a05e939c00c3f6dc07a8f8ead9c227b6e8232d8bd0883</originalsourceid><addsrcrecordid>eNqFkc1u1DAURi0EotOBLUtkiQ2bDI6dPy-HaNoiTWmllnXkcW6IK8cOtqOSHY_Ao_SZeBI8M6VIbFjZ-nzuuZY-hN6kZJUSQj_IHoYVJWlJGM-KZ2iR5jRNWFnkz9GC8KxMipzxE3Tq_R0hhBeMvUQntOJVynm5QA9nQioN-GY2oQevPLYdru0wWq-CsubXj5-1NcFZraHF506MPRiI6c00jtaFGF6H6xavtbYz_iyMlSIIPfvgsTAtvu1BObweR63iQxR6rAy-hNBHVOONBhnl0Xf1XbUH4DC2VaFX03DI569g8EcRAjgF_hV60Qnt4fXjuURfzja39UWyvTr_VK-3icxSUiSUQ04YZWnGeEEEZ1xkguQQL5IQybqilaQUVVeBaLmktNwVUFFG22rXkqpiS_T-6B2d_TaBD82gvASthQE7-SblWVXmBYtblujdP-idnZyJv4tUSfKScbanVkdKOuu9g64ZnRqEm5uUNPsum32XzVOXceDto3baDdA-4X_KiwA_Avexwfk_uqa-2Fz-lf8GdQOyKg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1970573930</pqid></control><display><type>article</type><title>Facile Synthesis of Composition‐Controlled Graphene‐Supported PtPd Alloy Nanocatalysts and Their Applications in Methanol Electro‐Oxidation and Lithium‐Oxygen Batteries</title><source>Wiley</source><creator>Ye, Seong Ji ; Bui, Hieu Trung ; Kim, Young Yun ; Liao, Kin ; Cho, Kyeong Min ; Jung, Hee‐Tae ; Kang, Yongku ; Kim, Do Youb ; Park, O Ok</creator><creatorcontrib>Ye, Seong Ji ; Bui, Hieu Trung ; Kim, Young Yun ; Liao, Kin ; Cho, Kyeong Min ; Jung, Hee‐Tae ; Kang, Yongku ; Kim, Do Youb ; Park, O Ok</creatorcontrib><description>A new and simple approach is reported for the synthesis of uniformly dispersed PtPd alloy nanocatalysts supported on graphene nanoplatelets (GNPs) (PtPd‐GNPs) through the introduction of bifunctional materials, which can modify the GNP surface and simultaneously reduce metal ions. With the use of poly(4‐styrenesulfonic acid), poly(vinyl pyrrolidone), poly(diallyldimethylammonium chloride), and poly(vinyl alcohol) as bifunctional materials, PtPd‐GNPs can be produced through a procedure that is far simpler than previously reported methods. The as‐prepared nanocrystals on GNPs clearly exhibit uniform PtPd alloy structures of around 2 nm in size, which are strongly anchored and well distributed on the GNP sheets. The Pt/Pd atomic ratio and loading density of the nanocrystals on the GNPs are controlled easily by changing the metal precursor feed ratio and the mass ratio of GNP to the metal precursor, respectively. As a result of the synergism between Pt and Pd, the as‐prepared PtPd‐GNPs exhibit markedly enhanced electrocatalytic performance during methanol electro‐oxidation compared with monometallic Pt‐GNP or commercially available Pt/C. Furthermore, the PtPd‐GNP nanocatalysts also show greatly enhanced catalytic activity toward the oxygen reduction/evolution reaction in a lithium‐oxygen (Li‐O2) process, resulting in greatly improved cycling stability of a Li‐O2 battery. Alloy‐enhanced electrocatalysis: A facile strategy is presented for the preparation of composition‐controlled PtPd alloy nanocatalysts on graphene through the introduction of bifunctional materials, which can be used to modify the graphene surface and simultaneously reduce metal ions (see figure). The PtPd‐GNP nanocatalysts show enhanced catalytic activity toward the oxygen reduction/evolution reaction, leading to improved cycling stability in Li‐O2 batteries.</description><identifier>ISSN: 0947-6539</identifier><identifier>EISSN: 1521-3765</identifier><identifier>DOI: 10.1002/chem.201703946</identifier><identifier>PMID: 28981997</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Alcohols ; alloys ; Batteries ; Catalysis ; Catalytic activity ; Chemistry ; composition control ; Crystals ; electrochemistry ; Graphene ; Lithium ; Lithium batteries ; Metal air batteries ; Metals ; Methanol ; methanol oxidation ; Nanocatalysis ; Nanocrystals ; Oxidation ; Oxygen ; Palladium ; Platinum ; Polyvinyl chloride ; Stress concentration ; Synergism ; Synthesis</subject><ispartof>Chemistry : a European journal, 2017-12, Vol.23 (67), p.17136-17143</ispartof><rights>2017 Wiley‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2017 Wiley-VCH Verlag GmbH &amp; Co. KGaA, Weinheim.</rights><rights>2017 Wiley-VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4106-29e50323143960a939a4a05e939c00c3f6dc07a8f8ead9c227b6e8232d8bd0883</citedby><cites>FETCH-LOGICAL-c4106-29e50323143960a939a4a05e939c00c3f6dc07a8f8ead9c227b6e8232d8bd0883</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28981997$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ye, Seong Ji</creatorcontrib><creatorcontrib>Bui, Hieu Trung</creatorcontrib><creatorcontrib>Kim, Young Yun</creatorcontrib><creatorcontrib>Liao, Kin</creatorcontrib><creatorcontrib>Cho, Kyeong Min</creatorcontrib><creatorcontrib>Jung, Hee‐Tae</creatorcontrib><creatorcontrib>Kang, Yongku</creatorcontrib><creatorcontrib>Kim, Do Youb</creatorcontrib><creatorcontrib>Park, O Ok</creatorcontrib><title>Facile Synthesis of Composition‐Controlled Graphene‐Supported PtPd Alloy Nanocatalysts and Their Applications in Methanol Electro‐Oxidation and Lithium‐Oxygen Batteries</title><title>Chemistry : a European journal</title><addtitle>Chemistry</addtitle><description>A new and simple approach is reported for the synthesis of uniformly dispersed PtPd alloy nanocatalysts supported on graphene nanoplatelets (GNPs) (PtPd‐GNPs) through the introduction of bifunctional materials, which can modify the GNP surface and simultaneously reduce metal ions. With the use of poly(4‐styrenesulfonic acid), poly(vinyl pyrrolidone), poly(diallyldimethylammonium chloride), and poly(vinyl alcohol) as bifunctional materials, PtPd‐GNPs can be produced through a procedure that is far simpler than previously reported methods. The as‐prepared nanocrystals on GNPs clearly exhibit uniform PtPd alloy structures of around 2 nm in size, which are strongly anchored and well distributed on the GNP sheets. The Pt/Pd atomic ratio and loading density of the nanocrystals on the GNPs are controlled easily by changing the metal precursor feed ratio and the mass ratio of GNP to the metal precursor, respectively. As a result of the synergism between Pt and Pd, the as‐prepared PtPd‐GNPs exhibit markedly enhanced electrocatalytic performance during methanol electro‐oxidation compared with monometallic Pt‐GNP or commercially available Pt/C. Furthermore, the PtPd‐GNP nanocatalysts also show greatly enhanced catalytic activity toward the oxygen reduction/evolution reaction in a lithium‐oxygen (Li‐O2) process, resulting in greatly improved cycling stability of a Li‐O2 battery. Alloy‐enhanced electrocatalysis: A facile strategy is presented for the preparation of composition‐controlled PtPd alloy nanocatalysts on graphene through the introduction of bifunctional materials, which can be used to modify the graphene surface and simultaneously reduce metal ions (see figure). The PtPd‐GNP nanocatalysts show enhanced catalytic activity toward the oxygen reduction/evolution reaction, leading to improved cycling stability in Li‐O2 batteries.</description><subject>Alcohols</subject><subject>alloys</subject><subject>Batteries</subject><subject>Catalysis</subject><subject>Catalytic activity</subject><subject>Chemistry</subject><subject>composition control</subject><subject>Crystals</subject><subject>electrochemistry</subject><subject>Graphene</subject><subject>Lithium</subject><subject>Lithium batteries</subject><subject>Metal air batteries</subject><subject>Metals</subject><subject>Methanol</subject><subject>methanol oxidation</subject><subject>Nanocatalysis</subject><subject>Nanocrystals</subject><subject>Oxidation</subject><subject>Oxygen</subject><subject>Palladium</subject><subject>Platinum</subject><subject>Polyvinyl chloride</subject><subject>Stress concentration</subject><subject>Synergism</subject><subject>Synthesis</subject><issn>0947-6539</issn><issn>1521-3765</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqFkc1u1DAURi0EotOBLUtkiQ2bDI6dPy-HaNoiTWmllnXkcW6IK8cOtqOSHY_Ao_SZeBI8M6VIbFjZ-nzuuZY-hN6kZJUSQj_IHoYVJWlJGM-KZ2iR5jRNWFnkz9GC8KxMipzxE3Tq_R0hhBeMvUQntOJVynm5QA9nQioN-GY2oQevPLYdru0wWq-CsubXj5-1NcFZraHF506MPRiI6c00jtaFGF6H6xavtbYz_iyMlSIIPfvgsTAtvu1BObweR63iQxR6rAy-hNBHVOONBhnl0Xf1XbUH4DC2VaFX03DI569g8EcRAjgF_hV60Qnt4fXjuURfzja39UWyvTr_VK-3icxSUiSUQ04YZWnGeEEEZ1xkguQQL5IQybqilaQUVVeBaLmktNwVUFFG22rXkqpiS_T-6B2d_TaBD82gvASthQE7-SblWVXmBYtblujdP-idnZyJv4tUSfKScbanVkdKOuu9g64ZnRqEm5uUNPsum32XzVOXceDto3baDdA-4X_KiwA_Avexwfk_uqa-2Fz-lf8GdQOyKg</recordid><startdate>20171201</startdate><enddate>20171201</enddate><creator>Ye, Seong Ji</creator><creator>Bui, Hieu Trung</creator><creator>Kim, Young Yun</creator><creator>Liao, Kin</creator><creator>Cho, Kyeong Min</creator><creator>Jung, Hee‐Tae</creator><creator>Kang, Yongku</creator><creator>Kim, Do Youb</creator><creator>Park, O Ok</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>K9.</scope><scope>7X8</scope></search><sort><creationdate>20171201</creationdate><title>Facile Synthesis of Composition‐Controlled Graphene‐Supported PtPd Alloy Nanocatalysts and Their Applications in Methanol Electro‐Oxidation and Lithium‐Oxygen Batteries</title><author>Ye, Seong Ji ; Bui, Hieu Trung ; Kim, Young Yun ; Liao, Kin ; Cho, Kyeong Min ; Jung, Hee‐Tae ; Kang, Yongku ; Kim, Do Youb ; Park, O Ok</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4106-29e50323143960a939a4a05e939c00c3f6dc07a8f8ead9c227b6e8232d8bd0883</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Alcohols</topic><topic>alloys</topic><topic>Batteries</topic><topic>Catalysis</topic><topic>Catalytic activity</topic><topic>Chemistry</topic><topic>composition control</topic><topic>Crystals</topic><topic>electrochemistry</topic><topic>Graphene</topic><topic>Lithium</topic><topic>Lithium batteries</topic><topic>Metal air batteries</topic><topic>Metals</topic><topic>Methanol</topic><topic>methanol oxidation</topic><topic>Nanocatalysis</topic><topic>Nanocrystals</topic><topic>Oxidation</topic><topic>Oxygen</topic><topic>Palladium</topic><topic>Platinum</topic><topic>Polyvinyl chloride</topic><topic>Stress concentration</topic><topic>Synergism</topic><topic>Synthesis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ye, Seong Ji</creatorcontrib><creatorcontrib>Bui, Hieu Trung</creatorcontrib><creatorcontrib>Kim, Young Yun</creatorcontrib><creatorcontrib>Liao, Kin</creatorcontrib><creatorcontrib>Cho, Kyeong Min</creatorcontrib><creatorcontrib>Jung, Hee‐Tae</creatorcontrib><creatorcontrib>Kang, Yongku</creatorcontrib><creatorcontrib>Kim, Do Youb</creatorcontrib><creatorcontrib>Park, O Ok</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>Chemistry : a European journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ye, Seong Ji</au><au>Bui, Hieu Trung</au><au>Kim, Young Yun</au><au>Liao, Kin</au><au>Cho, Kyeong Min</au><au>Jung, Hee‐Tae</au><au>Kang, Yongku</au><au>Kim, Do Youb</au><au>Park, O Ok</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Facile Synthesis of Composition‐Controlled Graphene‐Supported PtPd Alloy Nanocatalysts and Their Applications in Methanol Electro‐Oxidation and Lithium‐Oxygen Batteries</atitle><jtitle>Chemistry : a European journal</jtitle><addtitle>Chemistry</addtitle><date>2017-12-01</date><risdate>2017</risdate><volume>23</volume><issue>67</issue><spage>17136</spage><epage>17143</epage><pages>17136-17143</pages><issn>0947-6539</issn><eissn>1521-3765</eissn><abstract>A new and simple approach is reported for the synthesis of uniformly dispersed PtPd alloy nanocatalysts supported on graphene nanoplatelets (GNPs) (PtPd‐GNPs) through the introduction of bifunctional materials, which can modify the GNP surface and simultaneously reduce metal ions. With the use of poly(4‐styrenesulfonic acid), poly(vinyl pyrrolidone), poly(diallyldimethylammonium chloride), and poly(vinyl alcohol) as bifunctional materials, PtPd‐GNPs can be produced through a procedure that is far simpler than previously reported methods. The as‐prepared nanocrystals on GNPs clearly exhibit uniform PtPd alloy structures of around 2 nm in size, which are strongly anchored and well distributed on the GNP sheets. The Pt/Pd atomic ratio and loading density of the nanocrystals on the GNPs are controlled easily by changing the metal precursor feed ratio and the mass ratio of GNP to the metal precursor, respectively. As a result of the synergism between Pt and Pd, the as‐prepared PtPd‐GNPs exhibit markedly enhanced electrocatalytic performance during methanol electro‐oxidation compared with monometallic Pt‐GNP or commercially available Pt/C. Furthermore, the PtPd‐GNP nanocatalysts also show greatly enhanced catalytic activity toward the oxygen reduction/evolution reaction in a lithium‐oxygen (Li‐O2) process, resulting in greatly improved cycling stability of a Li‐O2 battery. Alloy‐enhanced electrocatalysis: A facile strategy is presented for the preparation of composition‐controlled PtPd alloy nanocatalysts on graphene through the introduction of bifunctional materials, which can be used to modify the graphene surface and simultaneously reduce metal ions (see figure). The PtPd‐GNP nanocatalysts show enhanced catalytic activity toward the oxygen reduction/evolution reaction, leading to improved cycling stability in Li‐O2 batteries.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>28981997</pmid><doi>10.1002/chem.201703946</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0947-6539
ispartof Chemistry : a European journal, 2017-12, Vol.23 (67), p.17136-17143
issn 0947-6539
1521-3765
language eng
recordid cdi_proquest_miscellaneous_1948756350
source Wiley
subjects Alcohols
alloys
Batteries
Catalysis
Catalytic activity
Chemistry
composition control
Crystals
electrochemistry
Graphene
Lithium
Lithium batteries
Metal air batteries
Metals
Methanol
methanol oxidation
Nanocatalysis
Nanocrystals
Oxidation
Oxygen
Palladium
Platinum
Polyvinyl chloride
Stress concentration
Synergism
Synthesis
title Facile Synthesis of Composition‐Controlled Graphene‐Supported PtPd Alloy Nanocatalysts and Their Applications in Methanol Electro‐Oxidation and Lithium‐Oxygen Batteries
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T11%3A32%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Facile%20Synthesis%20of%20Composition%E2%80%90Controlled%20Graphene%E2%80%90Supported%20PtPd%20Alloy%20Nanocatalysts%20and%20Their%20Applications%20in%20Methanol%20Electro%E2%80%90Oxidation%20and%20Lithium%E2%80%90Oxygen%20Batteries&rft.jtitle=Chemistry%20:%20a%20European%20journal&rft.au=Ye,%20Seong%20Ji&rft.date=2017-12-01&rft.volume=23&rft.issue=67&rft.spage=17136&rft.epage=17143&rft.pages=17136-17143&rft.issn=0947-6539&rft.eissn=1521-3765&rft_id=info:doi/10.1002/chem.201703946&rft_dat=%3Cproquest_cross%3E1970573930%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4106-29e50323143960a939a4a05e939c00c3f6dc07a8f8ead9c227b6e8232d8bd0883%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1970573930&rft_id=info:pmid/28981997&rfr_iscdi=true