Loading…

Cold shocks of Anammox biofilm stimulate nitrogen removal at low temperatures

The adaptation of Anammox (ANaerobic AMMonium OXidation) to low temperatures (10–15°C) is crucial for sustaining energy‐efficient nitrogen removal from the mainstream of municipal wastewater. But, current adaptation methods take months or even years. To speed up the adaption of Anammox to low temper...

Full description

Saved in:
Bibliographic Details
Published in:Biotechnology progress 2018-01, Vol.34 (1), p.277-281
Main Authors: Kouba, V., Darmal, R., Vejmelkova, D., Jenicek, P., Bartacek, J.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c3900-d6c33e0785e4417f1950f1b7c06d53ae20d742e41194560c399274b123fb90443
cites cdi_FETCH-LOGICAL-c3900-d6c33e0785e4417f1950f1b7c06d53ae20d742e41194560c399274b123fb90443
container_end_page 281
container_issue 1
container_start_page 277
container_title Biotechnology progress
container_volume 34
creator Kouba, V.
Darmal, R.
Vejmelkova, D.
Jenicek, P.
Bartacek, J.
description The adaptation of Anammox (ANaerobic AMMonium OXidation) to low temperatures (10–15°C) is crucial for sustaining energy‐efficient nitrogen removal from the mainstream of municipal wastewater. But, current adaptation methods take months or even years. To speed up the adaption of Anammox to low temperatures, this study describes a new approach: exposing Anammox microorganisms to an abrupt temporary reduction of temperature, i.e., cold shock. Anammox biomass in a moving bed biofilm reactor was subjected to three consecutive cold shocks (reduction from 24 ± 2 to 5.0 ± 0.2°C), each taking eight hours. Before the cold shocks, Anammox activity determined in ex situ tests using the temperature range of 12.5–19.5°C was 0.005–0.015 kg‐N kg‐VSS−1 day−1. Cold shocks increased the activity of Anammox at 10°C to 0.054 kg‐N kg‐VSS−1 day−1 after the third shock, which is similar to the highest activities obtained for cold‐enriched or adapted Anammox reported in the literature (0.080 kg‐N kg‐VSS−1 day−1). Fluorescence in situ hybridization analysis showed that Ca. Brocadia fulgida was the dominant species. Thus, cold shocks are an intriguing new strategy for the adaptation of Anammox to low temperature. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 34:277–281, 2018
doi_str_mv 10.1002/btpr.2570
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1951416342</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2006366037</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3900-d6c33e0785e4417f1950f1b7c06d53ae20d742e41194560c399274b123fb90443</originalsourceid><addsrcrecordid>eNp1kM1O3DAURi0EggG66AtUltiURYbrn9jjJYwKrUQFQtO15SQ3bagdT-2kwNs30wEWSKzu5tyjT4eQjwzmDICfVcM6zXmpYYfMWMmhUCDELpktdKkKbcTigBzmfA8AC1B8nxxwAwKMMDPyfRl9Q_OvWP_ONLb0vHchxEdadbHtfKB56MLo3YC074YUf2JPE4b413nqBurjAx0wrDG5YUyYj8le63zGD8_3iPy4_LJafi2ub66-Lc-vi1oYgKJRtRAIelGilEy3zJTQskrXoJpSOOTQaMlRMmZkqWB6MlzLinHRVgakFEfk89a7TvHPiHmwocs1eu96jGO2k5BJpoTkE3ryBr2PY-qndZYDKKGmVnqiTrdUnWLOCVu7Tl1w6ckysJvGdtPYbhpP7Kdn41gFbF7Jl6gTcLYFHjqPT--b7MXq9u6_8h-AHoRu</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2006366037</pqid></control><display><type>article</type><title>Cold shocks of Anammox biofilm stimulate nitrogen removal at low temperatures</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Kouba, V. ; Darmal, R. ; Vejmelkova, D. ; Jenicek, P. ; Bartacek, J.</creator><creatorcontrib>Kouba, V. ; Darmal, R. ; Vejmelkova, D. ; Jenicek, P. ; Bartacek, J.</creatorcontrib><description>The adaptation of Anammox (ANaerobic AMMonium OXidation) to low temperatures (10–15°C) is crucial for sustaining energy‐efficient nitrogen removal from the mainstream of municipal wastewater. But, current adaptation methods take months or even years. To speed up the adaption of Anammox to low temperatures, this study describes a new approach: exposing Anammox microorganisms to an abrupt temporary reduction of temperature, i.e., cold shock. Anammox biomass in a moving bed biofilm reactor was subjected to three consecutive cold shocks (reduction from 24 ± 2 to 5.0 ± 0.2°C), each taking eight hours. Before the cold shocks, Anammox activity determined in ex situ tests using the temperature range of 12.5–19.5°C was 0.005–0.015 kg‐N kg‐VSS−1 day−1. Cold shocks increased the activity of Anammox at 10°C to 0.054 kg‐N kg‐VSS−1 day−1 after the third shock, which is similar to the highest activities obtained for cold‐enriched or adapted Anammox reported in the literature (0.080 kg‐N kg‐VSS−1 day−1). Fluorescence in situ hybridization analysis showed that Ca. Brocadia fulgida was the dominant species. Thus, cold shocks are an intriguing new strategy for the adaptation of Anammox to low temperature. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 34:277–281, 2018</description><identifier>ISSN: 8756-7938</identifier><identifier>EISSN: 1520-6033</identifier><identifier>DOI: 10.1002/btpr.2570</identifier><identifier>PMID: 29030939</identifier><language>eng</language><publisher>United States: Wiley Subscription Services, Inc</publisher><subject>Adaptation ; adaptation to low temperatures ; Ammonium ; Ammonium Compounds - chemistry ; Anaerobiosis - genetics ; Bacteria - genetics ; Bacteria - growth &amp; development ; Bacteria - metabolism ; Biofilms ; Biofilms - growth &amp; development ; Bioreactors ; Cold ; Cold shock ; cold shocks ; Cold Temperature ; Cold-Shock Response - genetics ; Denitrification - genetics ; Dominant species ; Fluorescence ; Fluorescence in situ hybridization ; Hybridization analysis ; In Situ Hybridization, Fluorescence ; Low temperature ; main stream Anammox ; Microorganisms ; Municipal wastewater ; Nitrogen - metabolism ; Nitrogen removal ; Oxidation ; Oxidation-Reduction ; Reduction ; Temperature effects ; Waste Disposal, Fluid - methods ; Wastewater ; Wastewater treatment ; Water Purification - methods</subject><ispartof>Biotechnology progress, 2018-01, Vol.34 (1), p.277-281</ispartof><rights>2017 American Institute of Chemical Engineers</rights><rights>2017 American Institute of Chemical Engineers.</rights><rights>2018 American Institute of Chemical Engineers</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3900-d6c33e0785e4417f1950f1b7c06d53ae20d742e41194560c399274b123fb90443</citedby><cites>FETCH-LOGICAL-c3900-d6c33e0785e4417f1950f1b7c06d53ae20d742e41194560c399274b123fb90443</cites><orcidid>0000-0002-5725-7371</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29030939$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kouba, V.</creatorcontrib><creatorcontrib>Darmal, R.</creatorcontrib><creatorcontrib>Vejmelkova, D.</creatorcontrib><creatorcontrib>Jenicek, P.</creatorcontrib><creatorcontrib>Bartacek, J.</creatorcontrib><title>Cold shocks of Anammox biofilm stimulate nitrogen removal at low temperatures</title><title>Biotechnology progress</title><addtitle>Biotechnol Prog</addtitle><description>The adaptation of Anammox (ANaerobic AMMonium OXidation) to low temperatures (10–15°C) is crucial for sustaining energy‐efficient nitrogen removal from the mainstream of municipal wastewater. But, current adaptation methods take months or even years. To speed up the adaption of Anammox to low temperatures, this study describes a new approach: exposing Anammox microorganisms to an abrupt temporary reduction of temperature, i.e., cold shock. Anammox biomass in a moving bed biofilm reactor was subjected to three consecutive cold shocks (reduction from 24 ± 2 to 5.0 ± 0.2°C), each taking eight hours. Before the cold shocks, Anammox activity determined in ex situ tests using the temperature range of 12.5–19.5°C was 0.005–0.015 kg‐N kg‐VSS−1 day−1. Cold shocks increased the activity of Anammox at 10°C to 0.054 kg‐N kg‐VSS−1 day−1 after the third shock, which is similar to the highest activities obtained for cold‐enriched or adapted Anammox reported in the literature (0.080 kg‐N kg‐VSS−1 day−1). Fluorescence in situ hybridization analysis showed that Ca. Brocadia fulgida was the dominant species. Thus, cold shocks are an intriguing new strategy for the adaptation of Anammox to low temperature. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 34:277–281, 2018</description><subject>Adaptation</subject><subject>adaptation to low temperatures</subject><subject>Ammonium</subject><subject>Ammonium Compounds - chemistry</subject><subject>Anaerobiosis - genetics</subject><subject>Bacteria - genetics</subject><subject>Bacteria - growth &amp; development</subject><subject>Bacteria - metabolism</subject><subject>Biofilms</subject><subject>Biofilms - growth &amp; development</subject><subject>Bioreactors</subject><subject>Cold</subject><subject>Cold shock</subject><subject>cold shocks</subject><subject>Cold Temperature</subject><subject>Cold-Shock Response - genetics</subject><subject>Denitrification - genetics</subject><subject>Dominant species</subject><subject>Fluorescence</subject><subject>Fluorescence in situ hybridization</subject><subject>Hybridization analysis</subject><subject>In Situ Hybridization, Fluorescence</subject><subject>Low temperature</subject><subject>main stream Anammox</subject><subject>Microorganisms</subject><subject>Municipal wastewater</subject><subject>Nitrogen - metabolism</subject><subject>Nitrogen removal</subject><subject>Oxidation</subject><subject>Oxidation-Reduction</subject><subject>Reduction</subject><subject>Temperature effects</subject><subject>Waste Disposal, Fluid - methods</subject><subject>Wastewater</subject><subject>Wastewater treatment</subject><subject>Water Purification - methods</subject><issn>8756-7938</issn><issn>1520-6033</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kM1O3DAURi0EggG66AtUltiURYbrn9jjJYwKrUQFQtO15SQ3bagdT-2kwNs30wEWSKzu5tyjT4eQjwzmDICfVcM6zXmpYYfMWMmhUCDELpktdKkKbcTigBzmfA8AC1B8nxxwAwKMMDPyfRl9Q_OvWP_ONLb0vHchxEdadbHtfKB56MLo3YC074YUf2JPE4b413nqBurjAx0wrDG5YUyYj8le63zGD8_3iPy4_LJafi2ub66-Lc-vi1oYgKJRtRAIelGilEy3zJTQskrXoJpSOOTQaMlRMmZkqWB6MlzLinHRVgakFEfk89a7TvHPiHmwocs1eu96jGO2k5BJpoTkE3ryBr2PY-qndZYDKKGmVnqiTrdUnWLOCVu7Tl1w6ckysJvGdtPYbhpP7Kdn41gFbF7Jl6gTcLYFHjqPT--b7MXq9u6_8h-AHoRu</recordid><startdate>201801</startdate><enddate>201801</enddate><creator>Kouba, V.</creator><creator>Darmal, R.</creator><creator>Vejmelkova, D.</creator><creator>Jenicek, P.</creator><creator>Bartacek, J.</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QO</scope><scope>7T7</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>M7N</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-5725-7371</orcidid></search><sort><creationdate>201801</creationdate><title>Cold shocks of Anammox biofilm stimulate nitrogen removal at low temperatures</title><author>Kouba, V. ; Darmal, R. ; Vejmelkova, D. ; Jenicek, P. ; Bartacek, J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3900-d6c33e0785e4417f1950f1b7c06d53ae20d742e41194560c399274b123fb90443</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Adaptation</topic><topic>adaptation to low temperatures</topic><topic>Ammonium</topic><topic>Ammonium Compounds - chemistry</topic><topic>Anaerobiosis - genetics</topic><topic>Bacteria - genetics</topic><topic>Bacteria - growth &amp; development</topic><topic>Bacteria - metabolism</topic><topic>Biofilms</topic><topic>Biofilms - growth &amp; development</topic><topic>Bioreactors</topic><topic>Cold</topic><topic>Cold shock</topic><topic>cold shocks</topic><topic>Cold Temperature</topic><topic>Cold-Shock Response - genetics</topic><topic>Denitrification - genetics</topic><topic>Dominant species</topic><topic>Fluorescence</topic><topic>Fluorescence in situ hybridization</topic><topic>Hybridization analysis</topic><topic>In Situ Hybridization, Fluorescence</topic><topic>Low temperature</topic><topic>main stream Anammox</topic><topic>Microorganisms</topic><topic>Municipal wastewater</topic><topic>Nitrogen - metabolism</topic><topic>Nitrogen removal</topic><topic>Oxidation</topic><topic>Oxidation-Reduction</topic><topic>Reduction</topic><topic>Temperature effects</topic><topic>Waste Disposal, Fluid - methods</topic><topic>Wastewater</topic><topic>Wastewater treatment</topic><topic>Water Purification - methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kouba, V.</creatorcontrib><creatorcontrib>Darmal, R.</creatorcontrib><creatorcontrib>Vejmelkova, D.</creatorcontrib><creatorcontrib>Jenicek, P.</creatorcontrib><creatorcontrib>Bartacek, J.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Biotechnology progress</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kouba, V.</au><au>Darmal, R.</au><au>Vejmelkova, D.</au><au>Jenicek, P.</au><au>Bartacek, J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cold shocks of Anammox biofilm stimulate nitrogen removal at low temperatures</atitle><jtitle>Biotechnology progress</jtitle><addtitle>Biotechnol Prog</addtitle><date>2018-01</date><risdate>2018</risdate><volume>34</volume><issue>1</issue><spage>277</spage><epage>281</epage><pages>277-281</pages><issn>8756-7938</issn><eissn>1520-6033</eissn><abstract>The adaptation of Anammox (ANaerobic AMMonium OXidation) to low temperatures (10–15°C) is crucial for sustaining energy‐efficient nitrogen removal from the mainstream of municipal wastewater. But, current adaptation methods take months or even years. To speed up the adaption of Anammox to low temperatures, this study describes a new approach: exposing Anammox microorganisms to an abrupt temporary reduction of temperature, i.e., cold shock. Anammox biomass in a moving bed biofilm reactor was subjected to three consecutive cold shocks (reduction from 24 ± 2 to 5.0 ± 0.2°C), each taking eight hours. Before the cold shocks, Anammox activity determined in ex situ tests using the temperature range of 12.5–19.5°C was 0.005–0.015 kg‐N kg‐VSS−1 day−1. Cold shocks increased the activity of Anammox at 10°C to 0.054 kg‐N kg‐VSS−1 day−1 after the third shock, which is similar to the highest activities obtained for cold‐enriched or adapted Anammox reported in the literature (0.080 kg‐N kg‐VSS−1 day−1). Fluorescence in situ hybridization analysis showed that Ca. Brocadia fulgida was the dominant species. Thus, cold shocks are an intriguing new strategy for the adaptation of Anammox to low temperature. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 34:277–281, 2018</abstract><cop>United States</cop><pub>Wiley Subscription Services, Inc</pub><pmid>29030939</pmid><doi>10.1002/btpr.2570</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-5725-7371</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 8756-7938
ispartof Biotechnology progress, 2018-01, Vol.34 (1), p.277-281
issn 8756-7938
1520-6033
language eng
recordid cdi_proquest_miscellaneous_1951416342
source Wiley-Blackwell Read & Publish Collection
subjects Adaptation
adaptation to low temperatures
Ammonium
Ammonium Compounds - chemistry
Anaerobiosis - genetics
Bacteria - genetics
Bacteria - growth & development
Bacteria - metabolism
Biofilms
Biofilms - growth & development
Bioreactors
Cold
Cold shock
cold shocks
Cold Temperature
Cold-Shock Response - genetics
Denitrification - genetics
Dominant species
Fluorescence
Fluorescence in situ hybridization
Hybridization analysis
In Situ Hybridization, Fluorescence
Low temperature
main stream Anammox
Microorganisms
Municipal wastewater
Nitrogen - metabolism
Nitrogen removal
Oxidation
Oxidation-Reduction
Reduction
Temperature effects
Waste Disposal, Fluid - methods
Wastewater
Wastewater treatment
Water Purification - methods
title Cold shocks of Anammox biofilm stimulate nitrogen removal at low temperatures
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T15%3A51%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cold%20shocks%20of%20Anammox%20biofilm%20stimulate%20nitrogen%20removal%20at%20low%20temperatures&rft.jtitle=Biotechnology%20progress&rft.au=Kouba,%20V.&rft.date=2018-01&rft.volume=34&rft.issue=1&rft.spage=277&rft.epage=281&rft.pages=277-281&rft.issn=8756-7938&rft.eissn=1520-6033&rft_id=info:doi/10.1002/btpr.2570&rft_dat=%3Cproquest_cross%3E2006366037%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3900-d6c33e0785e4417f1950f1b7c06d53ae20d742e41194560c399274b123fb90443%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2006366037&rft_id=info:pmid/29030939&rfr_iscdi=true