Loading…
Cold shocks of Anammox biofilm stimulate nitrogen removal at low temperatures
The adaptation of Anammox (ANaerobic AMMonium OXidation) to low temperatures (10–15°C) is crucial for sustaining energy‐efficient nitrogen removal from the mainstream of municipal wastewater. But, current adaptation methods take months or even years. To speed up the adaption of Anammox to low temper...
Saved in:
Published in: | Biotechnology progress 2018-01, Vol.34 (1), p.277-281 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c3900-d6c33e0785e4417f1950f1b7c06d53ae20d742e41194560c399274b123fb90443 |
---|---|
cites | cdi_FETCH-LOGICAL-c3900-d6c33e0785e4417f1950f1b7c06d53ae20d742e41194560c399274b123fb90443 |
container_end_page | 281 |
container_issue | 1 |
container_start_page | 277 |
container_title | Biotechnology progress |
container_volume | 34 |
creator | Kouba, V. Darmal, R. Vejmelkova, D. Jenicek, P. Bartacek, J. |
description | The adaptation of Anammox (ANaerobic AMMonium OXidation) to low temperatures (10–15°C) is crucial for sustaining energy‐efficient nitrogen removal from the mainstream of municipal wastewater. But, current adaptation methods take months or even years. To speed up the adaption of Anammox to low temperatures, this study describes a new approach: exposing Anammox microorganisms to an abrupt temporary reduction of temperature, i.e., cold shock. Anammox biomass in a moving bed biofilm reactor was subjected to three consecutive cold shocks (reduction from 24 ± 2 to 5.0 ± 0.2°C), each taking eight hours. Before the cold shocks, Anammox activity determined in ex situ tests using the temperature range of 12.5–19.5°C was 0.005–0.015 kg‐N kg‐VSS−1 day−1. Cold shocks increased the activity of Anammox at 10°C to 0.054 kg‐N kg‐VSS−1 day−1 after the third shock, which is similar to the highest activities obtained for cold‐enriched or adapted Anammox reported in the literature (0.080 kg‐N kg‐VSS−1 day−1). Fluorescence in situ hybridization analysis showed that Ca. Brocadia fulgida was the dominant species. Thus, cold shocks are an intriguing new strategy for the adaptation of Anammox to low temperature. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 34:277–281, 2018 |
doi_str_mv | 10.1002/btpr.2570 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1951416342</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2006366037</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3900-d6c33e0785e4417f1950f1b7c06d53ae20d742e41194560c399274b123fb90443</originalsourceid><addsrcrecordid>eNp1kM1O3DAURi0EggG66AtUltiURYbrn9jjJYwKrUQFQtO15SQ3bagdT-2kwNs30wEWSKzu5tyjT4eQjwzmDICfVcM6zXmpYYfMWMmhUCDELpktdKkKbcTigBzmfA8AC1B8nxxwAwKMMDPyfRl9Q_OvWP_ONLb0vHchxEdadbHtfKB56MLo3YC074YUf2JPE4b413nqBurjAx0wrDG5YUyYj8le63zGD8_3iPy4_LJafi2ub66-Lc-vi1oYgKJRtRAIelGilEy3zJTQskrXoJpSOOTQaMlRMmZkqWB6MlzLinHRVgakFEfk89a7TvHPiHmwocs1eu96jGO2k5BJpoTkE3ryBr2PY-qndZYDKKGmVnqiTrdUnWLOCVu7Tl1w6ckysJvGdtPYbhpP7Kdn41gFbF7Jl6gTcLYFHjqPT--b7MXq9u6_8h-AHoRu</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2006366037</pqid></control><display><type>article</type><title>Cold shocks of Anammox biofilm stimulate nitrogen removal at low temperatures</title><source>Wiley-Blackwell Read & Publish Collection</source><creator>Kouba, V. ; Darmal, R. ; Vejmelkova, D. ; Jenicek, P. ; Bartacek, J.</creator><creatorcontrib>Kouba, V. ; Darmal, R. ; Vejmelkova, D. ; Jenicek, P. ; Bartacek, J.</creatorcontrib><description>The adaptation of Anammox (ANaerobic AMMonium OXidation) to low temperatures (10–15°C) is crucial for sustaining energy‐efficient nitrogen removal from the mainstream of municipal wastewater. But, current adaptation methods take months or even years. To speed up the adaption of Anammox to low temperatures, this study describes a new approach: exposing Anammox microorganisms to an abrupt temporary reduction of temperature, i.e., cold shock. Anammox biomass in a moving bed biofilm reactor was subjected to three consecutive cold shocks (reduction from 24 ± 2 to 5.0 ± 0.2°C), each taking eight hours. Before the cold shocks, Anammox activity determined in ex situ tests using the temperature range of 12.5–19.5°C was 0.005–0.015 kg‐N kg‐VSS−1 day−1. Cold shocks increased the activity of Anammox at 10°C to 0.054 kg‐N kg‐VSS−1 day−1 after the third shock, which is similar to the highest activities obtained for cold‐enriched or adapted Anammox reported in the literature (0.080 kg‐N kg‐VSS−1 day−1). Fluorescence in situ hybridization analysis showed that Ca. Brocadia fulgida was the dominant species. Thus, cold shocks are an intriguing new strategy for the adaptation of Anammox to low temperature. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 34:277–281, 2018</description><identifier>ISSN: 8756-7938</identifier><identifier>EISSN: 1520-6033</identifier><identifier>DOI: 10.1002/btpr.2570</identifier><identifier>PMID: 29030939</identifier><language>eng</language><publisher>United States: Wiley Subscription Services, Inc</publisher><subject>Adaptation ; adaptation to low temperatures ; Ammonium ; Ammonium Compounds - chemistry ; Anaerobiosis - genetics ; Bacteria - genetics ; Bacteria - growth & development ; Bacteria - metabolism ; Biofilms ; Biofilms - growth & development ; Bioreactors ; Cold ; Cold shock ; cold shocks ; Cold Temperature ; Cold-Shock Response - genetics ; Denitrification - genetics ; Dominant species ; Fluorescence ; Fluorescence in situ hybridization ; Hybridization analysis ; In Situ Hybridization, Fluorescence ; Low temperature ; main stream Anammox ; Microorganisms ; Municipal wastewater ; Nitrogen - metabolism ; Nitrogen removal ; Oxidation ; Oxidation-Reduction ; Reduction ; Temperature effects ; Waste Disposal, Fluid - methods ; Wastewater ; Wastewater treatment ; Water Purification - methods</subject><ispartof>Biotechnology progress, 2018-01, Vol.34 (1), p.277-281</ispartof><rights>2017 American Institute of Chemical Engineers</rights><rights>2017 American Institute of Chemical Engineers.</rights><rights>2018 American Institute of Chemical Engineers</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3900-d6c33e0785e4417f1950f1b7c06d53ae20d742e41194560c399274b123fb90443</citedby><cites>FETCH-LOGICAL-c3900-d6c33e0785e4417f1950f1b7c06d53ae20d742e41194560c399274b123fb90443</cites><orcidid>0000-0002-5725-7371</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29030939$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kouba, V.</creatorcontrib><creatorcontrib>Darmal, R.</creatorcontrib><creatorcontrib>Vejmelkova, D.</creatorcontrib><creatorcontrib>Jenicek, P.</creatorcontrib><creatorcontrib>Bartacek, J.</creatorcontrib><title>Cold shocks of Anammox biofilm stimulate nitrogen removal at low temperatures</title><title>Biotechnology progress</title><addtitle>Biotechnol Prog</addtitle><description>The adaptation of Anammox (ANaerobic AMMonium OXidation) to low temperatures (10–15°C) is crucial for sustaining energy‐efficient nitrogen removal from the mainstream of municipal wastewater. But, current adaptation methods take months or even years. To speed up the adaption of Anammox to low temperatures, this study describes a new approach: exposing Anammox microorganisms to an abrupt temporary reduction of temperature, i.e., cold shock. Anammox biomass in a moving bed biofilm reactor was subjected to three consecutive cold shocks (reduction from 24 ± 2 to 5.0 ± 0.2°C), each taking eight hours. Before the cold shocks, Anammox activity determined in ex situ tests using the temperature range of 12.5–19.5°C was 0.005–0.015 kg‐N kg‐VSS−1 day−1. Cold shocks increased the activity of Anammox at 10°C to 0.054 kg‐N kg‐VSS−1 day−1 after the third shock, which is similar to the highest activities obtained for cold‐enriched or adapted Anammox reported in the literature (0.080 kg‐N kg‐VSS−1 day−1). Fluorescence in situ hybridization analysis showed that Ca. Brocadia fulgida was the dominant species. Thus, cold shocks are an intriguing new strategy for the adaptation of Anammox to low temperature. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 34:277–281, 2018</description><subject>Adaptation</subject><subject>adaptation to low temperatures</subject><subject>Ammonium</subject><subject>Ammonium Compounds - chemistry</subject><subject>Anaerobiosis - genetics</subject><subject>Bacteria - genetics</subject><subject>Bacteria - growth & development</subject><subject>Bacteria - metabolism</subject><subject>Biofilms</subject><subject>Biofilms - growth & development</subject><subject>Bioreactors</subject><subject>Cold</subject><subject>Cold shock</subject><subject>cold shocks</subject><subject>Cold Temperature</subject><subject>Cold-Shock Response - genetics</subject><subject>Denitrification - genetics</subject><subject>Dominant species</subject><subject>Fluorescence</subject><subject>Fluorescence in situ hybridization</subject><subject>Hybridization analysis</subject><subject>In Situ Hybridization, Fluorescence</subject><subject>Low temperature</subject><subject>main stream Anammox</subject><subject>Microorganisms</subject><subject>Municipal wastewater</subject><subject>Nitrogen - metabolism</subject><subject>Nitrogen removal</subject><subject>Oxidation</subject><subject>Oxidation-Reduction</subject><subject>Reduction</subject><subject>Temperature effects</subject><subject>Waste Disposal, Fluid - methods</subject><subject>Wastewater</subject><subject>Wastewater treatment</subject><subject>Water Purification - methods</subject><issn>8756-7938</issn><issn>1520-6033</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kM1O3DAURi0EggG66AtUltiURYbrn9jjJYwKrUQFQtO15SQ3bagdT-2kwNs30wEWSKzu5tyjT4eQjwzmDICfVcM6zXmpYYfMWMmhUCDELpktdKkKbcTigBzmfA8AC1B8nxxwAwKMMDPyfRl9Q_OvWP_ONLb0vHchxEdadbHtfKB56MLo3YC074YUf2JPE4b413nqBurjAx0wrDG5YUyYj8le63zGD8_3iPy4_LJafi2ub66-Lc-vi1oYgKJRtRAIelGilEy3zJTQskrXoJpSOOTQaMlRMmZkqWB6MlzLinHRVgakFEfk89a7TvHPiHmwocs1eu96jGO2k5BJpoTkE3ryBr2PY-qndZYDKKGmVnqiTrdUnWLOCVu7Tl1w6ckysJvGdtPYbhpP7Kdn41gFbF7Jl6gTcLYFHjqPT--b7MXq9u6_8h-AHoRu</recordid><startdate>201801</startdate><enddate>201801</enddate><creator>Kouba, V.</creator><creator>Darmal, R.</creator><creator>Vejmelkova, D.</creator><creator>Jenicek, P.</creator><creator>Bartacek, J.</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QO</scope><scope>7T7</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>M7N</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-5725-7371</orcidid></search><sort><creationdate>201801</creationdate><title>Cold shocks of Anammox biofilm stimulate nitrogen removal at low temperatures</title><author>Kouba, V. ; Darmal, R. ; Vejmelkova, D. ; Jenicek, P. ; Bartacek, J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3900-d6c33e0785e4417f1950f1b7c06d53ae20d742e41194560c399274b123fb90443</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Adaptation</topic><topic>adaptation to low temperatures</topic><topic>Ammonium</topic><topic>Ammonium Compounds - chemistry</topic><topic>Anaerobiosis - genetics</topic><topic>Bacteria - genetics</topic><topic>Bacteria - growth & development</topic><topic>Bacteria - metabolism</topic><topic>Biofilms</topic><topic>Biofilms - growth & development</topic><topic>Bioreactors</topic><topic>Cold</topic><topic>Cold shock</topic><topic>cold shocks</topic><topic>Cold Temperature</topic><topic>Cold-Shock Response - genetics</topic><topic>Denitrification - genetics</topic><topic>Dominant species</topic><topic>Fluorescence</topic><topic>Fluorescence in situ hybridization</topic><topic>Hybridization analysis</topic><topic>In Situ Hybridization, Fluorescence</topic><topic>Low temperature</topic><topic>main stream Anammox</topic><topic>Microorganisms</topic><topic>Municipal wastewater</topic><topic>Nitrogen - metabolism</topic><topic>Nitrogen removal</topic><topic>Oxidation</topic><topic>Oxidation-Reduction</topic><topic>Reduction</topic><topic>Temperature effects</topic><topic>Waste Disposal, Fluid - methods</topic><topic>Wastewater</topic><topic>Wastewater treatment</topic><topic>Water Purification - methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kouba, V.</creatorcontrib><creatorcontrib>Darmal, R.</creatorcontrib><creatorcontrib>Vejmelkova, D.</creatorcontrib><creatorcontrib>Jenicek, P.</creatorcontrib><creatorcontrib>Bartacek, J.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Biotechnology progress</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kouba, V.</au><au>Darmal, R.</au><au>Vejmelkova, D.</au><au>Jenicek, P.</au><au>Bartacek, J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cold shocks of Anammox biofilm stimulate nitrogen removal at low temperatures</atitle><jtitle>Biotechnology progress</jtitle><addtitle>Biotechnol Prog</addtitle><date>2018-01</date><risdate>2018</risdate><volume>34</volume><issue>1</issue><spage>277</spage><epage>281</epage><pages>277-281</pages><issn>8756-7938</issn><eissn>1520-6033</eissn><abstract>The adaptation of Anammox (ANaerobic AMMonium OXidation) to low temperatures (10–15°C) is crucial for sustaining energy‐efficient nitrogen removal from the mainstream of municipal wastewater. But, current adaptation methods take months or even years. To speed up the adaption of Anammox to low temperatures, this study describes a new approach: exposing Anammox microorganisms to an abrupt temporary reduction of temperature, i.e., cold shock. Anammox biomass in a moving bed biofilm reactor was subjected to three consecutive cold shocks (reduction from 24 ± 2 to 5.0 ± 0.2°C), each taking eight hours. Before the cold shocks, Anammox activity determined in ex situ tests using the temperature range of 12.5–19.5°C was 0.005–0.015 kg‐N kg‐VSS−1 day−1. Cold shocks increased the activity of Anammox at 10°C to 0.054 kg‐N kg‐VSS−1 day−1 after the third shock, which is similar to the highest activities obtained for cold‐enriched or adapted Anammox reported in the literature (0.080 kg‐N kg‐VSS−1 day−1). Fluorescence in situ hybridization analysis showed that Ca. Brocadia fulgida was the dominant species. Thus, cold shocks are an intriguing new strategy for the adaptation of Anammox to low temperature. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 34:277–281, 2018</abstract><cop>United States</cop><pub>Wiley Subscription Services, Inc</pub><pmid>29030939</pmid><doi>10.1002/btpr.2570</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-5725-7371</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 8756-7938 |
ispartof | Biotechnology progress, 2018-01, Vol.34 (1), p.277-281 |
issn | 8756-7938 1520-6033 |
language | eng |
recordid | cdi_proquest_miscellaneous_1951416342 |
source | Wiley-Blackwell Read & Publish Collection |
subjects | Adaptation adaptation to low temperatures Ammonium Ammonium Compounds - chemistry Anaerobiosis - genetics Bacteria - genetics Bacteria - growth & development Bacteria - metabolism Biofilms Biofilms - growth & development Bioreactors Cold Cold shock cold shocks Cold Temperature Cold-Shock Response - genetics Denitrification - genetics Dominant species Fluorescence Fluorescence in situ hybridization Hybridization analysis In Situ Hybridization, Fluorescence Low temperature main stream Anammox Microorganisms Municipal wastewater Nitrogen - metabolism Nitrogen removal Oxidation Oxidation-Reduction Reduction Temperature effects Waste Disposal, Fluid - methods Wastewater Wastewater treatment Water Purification - methods |
title | Cold shocks of Anammox biofilm stimulate nitrogen removal at low temperatures |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T15%3A51%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cold%20shocks%20of%20Anammox%20biofilm%20stimulate%20nitrogen%20removal%20at%20low%20temperatures&rft.jtitle=Biotechnology%20progress&rft.au=Kouba,%20V.&rft.date=2018-01&rft.volume=34&rft.issue=1&rft.spage=277&rft.epage=281&rft.pages=277-281&rft.issn=8756-7938&rft.eissn=1520-6033&rft_id=info:doi/10.1002/btpr.2570&rft_dat=%3Cproquest_cross%3E2006366037%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3900-d6c33e0785e4417f1950f1b7c06d53ae20d742e41194560c399274b123fb90443%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2006366037&rft_id=info:pmid/29030939&rfr_iscdi=true |