Loading…

Hydrogen Gas Treatment Improves the Neurological Outcome After Traumatic Brain Injury Via Increasing miR-21 Expression

ABSTRACTHydrogen gas (H2) exerts a beneficial effect against traumatic brain injury (TBI). microRNA-21 (miR-21) is one of the most highly expressed members of small non-coding microRNA family in mammalian cells. miR-21 can improve the neurological outcome after TBI. In the present study, we investig...

Full description

Saved in:
Bibliographic Details
Published in:Shock (Augusta, Ga.) Ga.), 2018-09, Vol.50 (3), p.308-315
Main Authors: Wang, Lu, Zhao, Chongfa, Wu, Shuang, Xiao, Guanghui, Zhuge, Xin, Lei, Ping, Xie, Keliang
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:ABSTRACTHydrogen gas (H2) exerts a beneficial effect against traumatic brain injury (TBI). microRNA-21 (miR-21) is one of the most highly expressed members of small non-coding microRNA family in mammalian cells. miR-21 can improve the neurological outcome after TBI. In the present study, we investigated whether H2 treatment could improve the neurological outcome after TBI via increasing miR-21 expression. TBI was induced by controlled cortical impact in rats. H2 treatment was given by exposure to 2% H2 from 30 min to 5 h after TBI operation. Here, we found that H2 treatment significantly increased the expression of miR-21 in brain from 6 h to 3 d after TBI. The level of miR-21 expression in brain was significantly decreased after intracerebroventricular infusion of miR-21 antagomir in TBI-challenged rats with or without H2 treatment. Moreover, we found that H2 treatment conferred a better neurological outcome after TBI by improving neurological dysfunction, alleviating brain edema as well as decreasing lesion volume and blood–brain barrier permeability, which were significantly prevented by miR-21 antagomir. Furthermore, intracerebroventricular infusion of miR-21 agomir increased the level of miR-21 expression and decreased the lesion volume after TBI. In addition, H2 treatment decreased the levels of oxidative products (malondialdehyde and 8-iso-prostaglandin F2α) and increased the activities of endogenous antioxidant enzymes (superoxide dismutase and catalase) in brain after TBI, which were prevented by miR-21 antagomir. Taken together, these data indicate that H2 treatment improves the neurological outcome after TBI via increasing miR-21 expression.
ISSN:1073-2322
1540-0514
DOI:10.1097/SHK.0000000000001018