Loading…
Full stabilization and characterization of an optical frequency comb from a diode-pumped solid-state laser with GHz repetition rate
We demonstrate the first self-referenced full stabilization of a diode-pumped solid-state laser (DPSSL) frequency comb with a GHz repetition rate. The Yb:CALGO DPSSL delivers an average output power of up to 2.1 W with a typical pulse duration of 96 fs and a center wavelength of 1055 nm. A carrier-e...
Saved in:
Published in: | Optics express 2017-08, Vol.25 (17), p.20437-20453 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We demonstrate the first self-referenced full stabilization of a diode-pumped solid-state laser (DPSSL) frequency comb with a GHz repetition rate. The Yb:CALGO DPSSL delivers an average output power of up to 2.1 W with a typical pulse duration of 96 fs and a center wavelength of 1055 nm. A carrier-envelope offset (CEO) beat with a signal-to-noise ratio of 40 dB (in 10-kHz resolution bandwidth) is detected after supercontinuum generation and f-to-2f interferometry directly from the output of the oscillator, without any external amplification or pulse compression. The repetition rate is stabilized to a reference synthesizer with a residual integrated timing jitter of 249 fs [10 Hz - 1 MHz] and a relative frequency stability of 10
/s. The CEO frequency is phase-locked to an external reference via pump current feedback using home-built modulation electronics. It achieves a loop bandwidth of ~150 kHz, which results in a tight CEO lock with a residual integrated phase noise of 680 mrad [1 Hz - 1 MHz]. We present a detailed characterization of the GHz frequency comb that combines a noise analysis of the repetition rate f
, of the CEO frequency f
, and of an optical comb line at 1030 nm obtained from a virtual beat with a narrow-linewidth laser at 1557 nm using a transfer oscillator. An optical comb linewidth of about 800 kHz is assessed at 1-s observation time, for which the dominant noise sources of f
and f
are identified. |
---|---|
ISSN: | 1094-4087 1094-4087 |
DOI: | 10.1364/OE.25.020437 |