Loading…
Simple autocorrelation method for thoroughly characterizing single-photon detectors
We introduce and demonstrate a simple and highly sensitive method for characterizing single-photon detectors. This method is based on analyzing multi-order correlations among time-tagged detection events from a device under calibrated continuous-wave illumination. First- and second-order properties...
Saved in:
Published in: | Optics express 2017-08, Vol.25 (17), p.20352-20362 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We introduce and demonstrate a simple and highly sensitive method for characterizing single-photon detectors. This method is based on analyzing multi-order correlations among time-tagged detection events from a device under calibrated continuous-wave illumination. First- and second-order properties such as detection efficiency, dark count rate, afterpulse probability, dead time, and reset behavior are measured with high accuracy from a single data set, as well as higher-order properties such as higher-order afterpulse effects. While the technique is applicable to any type of click/no-click detector, we apply it to two different single-photon avalanche diodes, and we find that it reveals a heretofore unreported afterpulse effect due to detection events that occur during the device reset. |
---|---|
ISSN: | 1094-4087 1094-4087 |
DOI: | 10.1364/OE.25.020352 |