Loading…

The effect of sample size and species characteristics on performance of different species distribution modeling methods

Species distribution models should provide conservation practioners with estimates of the spatial distributions of species requiring attention. These species are often rare and have limited known occurrences, posing challenges for creating accurate species distribution models. We tested four modelin...

Full description

Saved in:
Bibliographic Details
Published in:Ecography (Copenhagen) 2006-10, Vol.29 (5), p.773-785
Main Authors: Hernandez, Pilar A., Graham, Catherine H., Master, Lawrence L., Albert, Deborah L.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c5010-b8124b915da8541421d4afb9a9fb4cc4c37a6a04be9b91d11d8dc5c3c04dfca13
cites cdi_FETCH-LOGICAL-c5010-b8124b915da8541421d4afb9a9fb4cc4c37a6a04be9b91d11d8dc5c3c04dfca13
container_end_page 785
container_issue 5
container_start_page 773
container_title Ecography (Copenhagen)
container_volume 29
creator Hernandez, Pilar A.
Graham, Catherine H.
Master, Lawrence L.
Albert, Deborah L.
description Species distribution models should provide conservation practioners with estimates of the spatial distributions of species requiring attention. These species are often rare and have limited known occurrences, posing challenges for creating accurate species distribution models. We tested four modeling methods (Bioclim, Domain, GARP, and Maxent) across 18 species with different levels of ecological specialization using six different sample size treatments and three different evaluation measures. Our assessment revealed that Maxent was the most capable of the four modeling methods in producing useful results with sample sizes as small as 5, 10 and 25 occurrences. The other methods compensated reasonably well (Domain and GARP) to poorly (Bioclim) when presented with datasets of small sample sizes. We show that multiple evaluation measures are necessary to determine accuracy of models produced with presence-only data. Further, we found that accuracy of models is greater for species with small geographic ranges and limited environmental tolerance, ecological characteristics of many rare species. Our results indicate that reasonable models can be made for some rare species, a result that should encourage conservationists to add distribution modeling to their toolbox.
doi_str_mv 10.1111/j.0906-7590.2006.04700.x
format article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_19539804</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>30243167</jstor_id><sourcerecordid>30243167</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5010-b8124b915da8541421d4afb9a9fb4cc4c37a6a04be9b91d11d8dc5c3c04dfca13</originalsourceid><addsrcrecordid>eNqNkE1r3DAURUVpoNOkP6GgTbuz82TLtrwplCFxAqFZJCVLIUtPHU39VclDJv31lesw3VYbC-65V-YQQhmkLJ7LfQo1lElV1JBmAGUKvAJIj2_IhpUACRSieks2J-gdeR_CHoBldSk25PlxhxStRT3T0dKg-qlDGtxvpGowNEyoHQaqd8orPaN3YXY60HGgE3o7-l4NGpemcXHE4zCfOiay3rWH2UW6Hw12bvhBe5x3owkX5MyqLuCH1-85-X599bi9Se7um9vt17tEF8AgaQXLeFuzwihRcMYzZriyba1q23Ktuc4rVSrgLdaRMowZYXShcw3cWK1Yfk4-r7uTH38dMMyyd0Fj16kBx0OQrC7yWgCPoFhB7ccQPFo5edcr_yIZyMW03MtFolwkysW0_GtaHmP10-sbKmjVWR-duPCvLzIuSrH8y5eVe3Ydvvz3vrza3jfLNQ58XAf2YR79aSCHjOesrGKerHk0j8dTrvxPGdOqkE_fGvnU3DQP5QOTPP8D_ROtXA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>19539804</pqid></control><display><type>article</type><title>The effect of sample size and species characteristics on performance of different species distribution modeling methods</title><source>JSTOR Archival Journals and Primary Sources Collection【Remote access available】</source><creator>Hernandez, Pilar A. ; Graham, Catherine H. ; Master, Lawrence L. ; Albert, Deborah L.</creator><creatorcontrib>Hernandez, Pilar A. ; Graham, Catherine H. ; Master, Lawrence L. ; Albert, Deborah L.</creatorcontrib><description>Species distribution models should provide conservation practioners with estimates of the spatial distributions of species requiring attention. These species are often rare and have limited known occurrences, posing challenges for creating accurate species distribution models. We tested four modeling methods (Bioclim, Domain, GARP, and Maxent) across 18 species with different levels of ecological specialization using six different sample size treatments and three different evaluation measures. Our assessment revealed that Maxent was the most capable of the four modeling methods in producing useful results with sample sizes as small as 5, 10 and 25 occurrences. The other methods compensated reasonably well (Domain and GARP) to poorly (Bioclim) when presented with datasets of small sample sizes. We show that multiple evaluation measures are necessary to determine accuracy of models produced with presence-only data. Further, we found that accuracy of models is greater for species with small geographic ranges and limited environmental tolerance, ecological characteristics of many rare species. Our results indicate that reasonable models can be made for some rare species, a result that should encourage conservationists to add distribution modeling to their toolbox.</description><identifier>ISSN: 0906-7590</identifier><identifier>EISSN: 1600-0587</identifier><identifier>DOI: 10.1111/j.0906-7590.2006.04700.x</identifier><language>eng</language><publisher>Copenhagen: Blackwell Publishing Ltd</publisher><subject>Animal and plant ecology ; Animal, plant and microbial ecology ; Biological and medical sciences ; Biological taxonomies ; Datasets ; Ecological modeling ; Environmental conservation ; Fundamental and applied biological sciences. Psychology ; General aspects ; General aspects. Techniques ; Global atmospheric research program ; Methods and techniques (sampling, tagging, trapping, modelling...) ; Modeling ; Predictive modeling ; Sample size ; Spatial models ; Species</subject><ispartof>Ecography (Copenhagen), 2006-10, Vol.29 (5), p.773-785</ispartof><rights>Copyright 2006 Ecography</rights><rights>2007 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5010-b8124b915da8541421d4afb9a9fb4cc4c37a6a04be9b91d11d8dc5c3c04dfca13</citedby><cites>FETCH-LOGICAL-c5010-b8124b915da8541421d4afb9a9fb4cc4c37a6a04be9b91d11d8dc5c3c04dfca13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/30243167$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/30243167$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,58238,58471</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=18248681$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Hernandez, Pilar A.</creatorcontrib><creatorcontrib>Graham, Catherine H.</creatorcontrib><creatorcontrib>Master, Lawrence L.</creatorcontrib><creatorcontrib>Albert, Deborah L.</creatorcontrib><title>The effect of sample size and species characteristics on performance of different species distribution modeling methods</title><title>Ecography (Copenhagen)</title><addtitle>Ecography</addtitle><description>Species distribution models should provide conservation practioners with estimates of the spatial distributions of species requiring attention. These species are often rare and have limited known occurrences, posing challenges for creating accurate species distribution models. We tested four modeling methods (Bioclim, Domain, GARP, and Maxent) across 18 species with different levels of ecological specialization using six different sample size treatments and three different evaluation measures. Our assessment revealed that Maxent was the most capable of the four modeling methods in producing useful results with sample sizes as small as 5, 10 and 25 occurrences. The other methods compensated reasonably well (Domain and GARP) to poorly (Bioclim) when presented with datasets of small sample sizes. We show that multiple evaluation measures are necessary to determine accuracy of models produced with presence-only data. Further, we found that accuracy of models is greater for species with small geographic ranges and limited environmental tolerance, ecological characteristics of many rare species. Our results indicate that reasonable models can be made for some rare species, a result that should encourage conservationists to add distribution modeling to their toolbox.</description><subject>Animal and plant ecology</subject><subject>Animal, plant and microbial ecology</subject><subject>Biological and medical sciences</subject><subject>Biological taxonomies</subject><subject>Datasets</subject><subject>Ecological modeling</subject><subject>Environmental conservation</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>General aspects</subject><subject>General aspects. Techniques</subject><subject>Global atmospheric research program</subject><subject>Methods and techniques (sampling, tagging, trapping, modelling...)</subject><subject>Modeling</subject><subject>Predictive modeling</subject><subject>Sample size</subject><subject>Spatial models</subject><subject>Species</subject><issn>0906-7590</issn><issn>1600-0587</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNqNkE1r3DAURUVpoNOkP6GgTbuz82TLtrwplCFxAqFZJCVLIUtPHU39VclDJv31lesw3VYbC-65V-YQQhmkLJ7LfQo1lElV1JBmAGUKvAJIj2_IhpUACRSieks2J-gdeR_CHoBldSk25PlxhxStRT3T0dKg-qlDGtxvpGowNEyoHQaqd8orPaN3YXY60HGgE3o7-l4NGpemcXHE4zCfOiay3rWH2UW6Hw12bvhBe5x3owkX5MyqLuCH1-85-X599bi9Se7um9vt17tEF8AgaQXLeFuzwihRcMYzZriyba1q23Ktuc4rVSrgLdaRMowZYXShcw3cWK1Yfk4-r7uTH38dMMyyd0Fj16kBx0OQrC7yWgCPoFhB7ccQPFo5edcr_yIZyMW03MtFolwkysW0_GtaHmP10-sbKmjVWR-duPCvLzIuSrH8y5eVe3Ydvvz3vrza3jfLNQ58XAf2YR79aSCHjOesrGKerHk0j8dTrvxPGdOqkE_fGvnU3DQP5QOTPP8D_ROtXA</recordid><startdate>200610</startdate><enddate>200610</enddate><creator>Hernandez, Pilar A.</creator><creator>Graham, Catherine H.</creator><creator>Master, Lawrence L.</creator><creator>Albert, Deborah L.</creator><general>Blackwell Publishing Ltd</general><general>Blackwell Publishing</general><general>Blackwell</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SN</scope><scope>7ST</scope><scope>7U6</scope><scope>C1K</scope></search><sort><creationdate>200610</creationdate><title>The effect of sample size and species characteristics on performance of different species distribution modeling methods</title><author>Hernandez, Pilar A. ; Graham, Catherine H. ; Master, Lawrence L. ; Albert, Deborah L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5010-b8124b915da8541421d4afb9a9fb4cc4c37a6a04be9b91d11d8dc5c3c04dfca13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Animal and plant ecology</topic><topic>Animal, plant and microbial ecology</topic><topic>Biological and medical sciences</topic><topic>Biological taxonomies</topic><topic>Datasets</topic><topic>Ecological modeling</topic><topic>Environmental conservation</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>General aspects</topic><topic>General aspects. Techniques</topic><topic>Global atmospheric research program</topic><topic>Methods and techniques (sampling, tagging, trapping, modelling...)</topic><topic>Modeling</topic><topic>Predictive modeling</topic><topic>Sample size</topic><topic>Spatial models</topic><topic>Species</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hernandez, Pilar A.</creatorcontrib><creatorcontrib>Graham, Catherine H.</creatorcontrib><creatorcontrib>Master, Lawrence L.</creatorcontrib><creatorcontrib>Albert, Deborah L.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Ecology Abstracts</collection><collection>Environment Abstracts</collection><collection>Sustainability Science Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><jtitle>Ecography (Copenhagen)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hernandez, Pilar A.</au><au>Graham, Catherine H.</au><au>Master, Lawrence L.</au><au>Albert, Deborah L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The effect of sample size and species characteristics on performance of different species distribution modeling methods</atitle><jtitle>Ecography (Copenhagen)</jtitle><addtitle>Ecography</addtitle><date>2006-10</date><risdate>2006</risdate><volume>29</volume><issue>5</issue><spage>773</spage><epage>785</epage><pages>773-785</pages><issn>0906-7590</issn><eissn>1600-0587</eissn><abstract>Species distribution models should provide conservation practioners with estimates of the spatial distributions of species requiring attention. These species are often rare and have limited known occurrences, posing challenges for creating accurate species distribution models. We tested four modeling methods (Bioclim, Domain, GARP, and Maxent) across 18 species with different levels of ecological specialization using six different sample size treatments and three different evaluation measures. Our assessment revealed that Maxent was the most capable of the four modeling methods in producing useful results with sample sizes as small as 5, 10 and 25 occurrences. The other methods compensated reasonably well (Domain and GARP) to poorly (Bioclim) when presented with datasets of small sample sizes. We show that multiple evaluation measures are necessary to determine accuracy of models produced with presence-only data. Further, we found that accuracy of models is greater for species with small geographic ranges and limited environmental tolerance, ecological characteristics of many rare species. Our results indicate that reasonable models can be made for some rare species, a result that should encourage conservationists to add distribution modeling to their toolbox.</abstract><cop>Copenhagen</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1111/j.0906-7590.2006.04700.x</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0906-7590
ispartof Ecography (Copenhagen), 2006-10, Vol.29 (5), p.773-785
issn 0906-7590
1600-0587
language eng
recordid cdi_proquest_miscellaneous_19539804
source JSTOR Archival Journals and Primary Sources Collection【Remote access available】
subjects Animal and plant ecology
Animal, plant and microbial ecology
Biological and medical sciences
Biological taxonomies
Datasets
Ecological modeling
Environmental conservation
Fundamental and applied biological sciences. Psychology
General aspects
General aspects. Techniques
Global atmospheric research program
Methods and techniques (sampling, tagging, trapping, modelling...)
Modeling
Predictive modeling
Sample size
Spatial models
Species
title The effect of sample size and species characteristics on performance of different species distribution modeling methods
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T03%3A01%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20effect%20of%20sample%20size%20and%20species%20characteristics%20on%20performance%20of%20different%20species%20distribution%20modeling%20methods&rft.jtitle=Ecography%20(Copenhagen)&rft.au=Hernandez,%20Pilar%20A.&rft.date=2006-10&rft.volume=29&rft.issue=5&rft.spage=773&rft.epage=785&rft.pages=773-785&rft.issn=0906-7590&rft.eissn=1600-0587&rft_id=info:doi/10.1111/j.0906-7590.2006.04700.x&rft_dat=%3Cjstor_proqu%3E30243167%3C/jstor_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c5010-b8124b915da8541421d4afb9a9fb4cc4c37a6a04be9b91d11d8dc5c3c04dfca13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=19539804&rft_id=info:pmid/&rft_jstor_id=30243167&rfr_iscdi=true