Loading…
A liquid metal reaction environment for the room-temperature synthesis of atomically thin metal oxides
Two-dimensional (2D) oxides have a wide variety of applications in electronics and other technologies. However, many oxides are not easy to synthesize as 2D materials through conventional methods. We used nontoxic eutectic gallium-based alloys as a reaction solvent and co-alloyed desired metals into...
Saved in:
Published in: | Science (American Association for the Advancement of Science) 2017-10, Vol.358 (6361), p.332-335 |
---|---|
Main Authors: | , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c491t-5ce7b97e35b1787afd53b19471a3ae3778b5777f9c113fa2e245d2027da8a0713 |
---|---|
cites | cdi_FETCH-LOGICAL-c491t-5ce7b97e35b1787afd53b19471a3ae3778b5777f9c113fa2e245d2027da8a0713 |
container_end_page | 335 |
container_issue | 6361 |
container_start_page | 332 |
container_title | Science (American Association for the Advancement of Science) |
container_volume | 358 |
creator | Zavabeti, Ali Ou, Jian Zhen Carey, Benjamin J. Syed, Nitu Orrell-Trigg, Rebecca Mayes, Edwin L. H. Xu, Chenglong Kavehei, Omid O’Mullane, Anthony P. Kaner, Richard B. Kalantar-zadeh, Kourosh Daeneke, Torben |
description | Two-dimensional (2D) oxides have a wide variety of applications in electronics and other technologies. However, many oxides are not easy to synthesize as 2D materials through conventional methods. We used nontoxic eutectic gallium-based alloys as a reaction solvent and co-alloyed desired metals into the melt. On the basis of thermodynamic considerations, we predicted the composition of the self-limiting interfacial oxide. We isolated the surface oxide as a 2D layer, either on substrates or in suspension. This enabled us to produce extremely thin subnanometer layers of HfO₂, Al₂O₃, and Gd₂O₃. The liquid metal–based reaction route can be used to create 2D materials that were previously inaccessible with preexisting methods. The work introduces room-temperature liquid metals as a reaction environment for the synthesis of oxide nanomaterials with low dimensionality. |
doi_str_mv | 10.1126/science.aao4249 |
format | article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1954065299</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26400558</jstor_id><sourcerecordid>26400558</sourcerecordid><originalsourceid>FETCH-LOGICAL-c491t-5ce7b97e35b1787afd53b19471a3ae3778b5777f9c113fa2e245d2027da8a0713</originalsourceid><addsrcrecordid>eNpd0c9L5DAUB_CwKOv44-xJCXjxUn1JmklzFHFXQfCyey5p-spmaJMxSWXnvzfLVBc8BfI--RLel5BzBjeM8fVtsg69xRtjQs1r_Y2sGGhZaQ7igKwAxLpqQMkjcpzSBqDMtPhOjrgGyYTiKzLc0dG9zq6nE2Yz0ojGZhc8Rf_mYvAT-kyHEGn-gzSGMFUZpy1Gk-eINO18uU8u0TBQk8PkrBnHXcHOL4Hhr-sxnZLDwYwJz5bzhPz-8fDr_rF6fvn5dH_3XNlas1xJi6rTCoXsmGqUGXopOqZrxYwwKJRqOqmUGrRlTAyGI69lz4Gr3jQGFBMn5Hqfu43hdcaU28kli-NoPIY5tUzLGtaSa13o1Re6CXP05XdFKQnAaiaKut0rG0NKEYd2G91k4q5l0P6roF0qaJcKyovLJXfuJuw__cfOC7jYg03KIf6fr2sAKRvxDgpKjo0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1975001413</pqid></control><display><type>article</type><title>A liquid metal reaction environment for the room-temperature synthesis of atomically thin metal oxides</title><source>American Association for the Advancement of Science</source><source>JSTOR Archival Journals and Primary Sources Collection</source><source>Alma/SFX Local Collection</source><creator>Zavabeti, Ali ; Ou, Jian Zhen ; Carey, Benjamin J. ; Syed, Nitu ; Orrell-Trigg, Rebecca ; Mayes, Edwin L. H. ; Xu, Chenglong ; Kavehei, Omid ; O’Mullane, Anthony P. ; Kaner, Richard B. ; Kalantar-zadeh, Kourosh ; Daeneke, Torben</creator><creatorcontrib>Zavabeti, Ali ; Ou, Jian Zhen ; Carey, Benjamin J. ; Syed, Nitu ; Orrell-Trigg, Rebecca ; Mayes, Edwin L. H. ; Xu, Chenglong ; Kavehei, Omid ; O’Mullane, Anthony P. ; Kaner, Richard B. ; Kalantar-zadeh, Kourosh ; Daeneke, Torben</creatorcontrib><description>Two-dimensional (2D) oxides have a wide variety of applications in electronics and other technologies. However, many oxides are not easy to synthesize as 2D materials through conventional methods. We used nontoxic eutectic gallium-based alloys as a reaction solvent and co-alloyed desired metals into the melt. On the basis of thermodynamic considerations, we predicted the composition of the self-limiting interfacial oxide. We isolated the surface oxide as a 2D layer, either on substrates or in suspension. This enabled us to produce extremely thin subnanometer layers of HfO₂, Al₂O₃, and Gd₂O₃. The liquid metal–based reaction route can be used to create 2D materials that were previously inaccessible with preexisting methods. The work introduces room-temperature liquid metals as a reaction environment for the synthesis of oxide nanomaterials with low dimensionality.</description><identifier>ISSN: 0036-8075</identifier><identifier>EISSN: 1095-9203</identifier><identifier>DOI: 10.1126/science.aao4249</identifier><identifier>PMID: 29051372</identifier><language>eng</language><publisher>United States: American Association for the Advancement of Science</publisher><subject>Aluminum oxide ; Chemical synthesis ; Crystals ; Electronics ; Electronics industry ; Gadolinium ; Gadolinium oxides ; Gallium ; Gallium oxides ; Hafnium ; Hafnium oxide ; Heavy metals ; Liquid metals ; Manufacturing Industry ; Metal sheets ; Metals ; Nanomaterials ; Nanotechnology ; Oxides ; Room temperature ; Substrates ; Thin films</subject><ispartof>Science (American Association for the Advancement of Science), 2017-10, Vol.358 (6361), p.332-335</ispartof><rights>Copyright © 2017 by the American Association for the Advancement of Science</rights><rights>Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.</rights><rights>Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c491t-5ce7b97e35b1787afd53b19471a3ae3778b5777f9c113fa2e245d2027da8a0713</citedby><cites>FETCH-LOGICAL-c491t-5ce7b97e35b1787afd53b19471a3ae3778b5777f9c113fa2e245d2027da8a0713</cites><orcidid>0000-0002-4775-127X ; 0000-0002-1361-7259 ; 0000-0002-2753-5553 ; 0000-0003-0345-4924 ; 0000-0003-1142-8646 ; 0000-0002-5860-8938 ; 0000-0003-1720-1725 ; 0000-0002-6330-1973 ; 0000-0002-6971-2634 ; 0000-0001-9294-5180 ; 0000-0001-6109-132X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26400558$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26400558$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,2884,2885,27924,27925,58238,58471</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29051372$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zavabeti, Ali</creatorcontrib><creatorcontrib>Ou, Jian Zhen</creatorcontrib><creatorcontrib>Carey, Benjamin J.</creatorcontrib><creatorcontrib>Syed, Nitu</creatorcontrib><creatorcontrib>Orrell-Trigg, Rebecca</creatorcontrib><creatorcontrib>Mayes, Edwin L. H.</creatorcontrib><creatorcontrib>Xu, Chenglong</creatorcontrib><creatorcontrib>Kavehei, Omid</creatorcontrib><creatorcontrib>O’Mullane, Anthony P.</creatorcontrib><creatorcontrib>Kaner, Richard B.</creatorcontrib><creatorcontrib>Kalantar-zadeh, Kourosh</creatorcontrib><creatorcontrib>Daeneke, Torben</creatorcontrib><title>A liquid metal reaction environment for the room-temperature synthesis of atomically thin metal oxides</title><title>Science (American Association for the Advancement of Science)</title><addtitle>Science</addtitle><description>Two-dimensional (2D) oxides have a wide variety of applications in electronics and other technologies. However, many oxides are not easy to synthesize as 2D materials through conventional methods. We used nontoxic eutectic gallium-based alloys as a reaction solvent and co-alloyed desired metals into the melt. On the basis of thermodynamic considerations, we predicted the composition of the self-limiting interfacial oxide. We isolated the surface oxide as a 2D layer, either on substrates or in suspension. This enabled us to produce extremely thin subnanometer layers of HfO₂, Al₂O₃, and Gd₂O₃. The liquid metal–based reaction route can be used to create 2D materials that were previously inaccessible with preexisting methods. The work introduces room-temperature liquid metals as a reaction environment for the synthesis of oxide nanomaterials with low dimensionality.</description><subject>Aluminum oxide</subject><subject>Chemical synthesis</subject><subject>Crystals</subject><subject>Electronics</subject><subject>Electronics industry</subject><subject>Gadolinium</subject><subject>Gadolinium oxides</subject><subject>Gallium</subject><subject>Gallium oxides</subject><subject>Hafnium</subject><subject>Hafnium oxide</subject><subject>Heavy metals</subject><subject>Liquid metals</subject><subject>Manufacturing Industry</subject><subject>Metal sheets</subject><subject>Metals</subject><subject>Nanomaterials</subject><subject>Nanotechnology</subject><subject>Oxides</subject><subject>Room temperature</subject><subject>Substrates</subject><subject>Thin films</subject><issn>0036-8075</issn><issn>1095-9203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNpd0c9L5DAUB_CwKOv44-xJCXjxUn1JmklzFHFXQfCyey5p-spmaJMxSWXnvzfLVBc8BfI--RLel5BzBjeM8fVtsg69xRtjQs1r_Y2sGGhZaQ7igKwAxLpqQMkjcpzSBqDMtPhOjrgGyYTiKzLc0dG9zq6nE2Yz0ojGZhc8Rf_mYvAT-kyHEGn-gzSGMFUZpy1Gk-eINO18uU8u0TBQk8PkrBnHXcHOL4Hhr-sxnZLDwYwJz5bzhPz-8fDr_rF6fvn5dH_3XNlas1xJi6rTCoXsmGqUGXopOqZrxYwwKJRqOqmUGrRlTAyGI69lz4Gr3jQGFBMn5Hqfu43hdcaU28kli-NoPIY5tUzLGtaSa13o1Re6CXP05XdFKQnAaiaKut0rG0NKEYd2G91k4q5l0P6roF0qaJcKyovLJXfuJuw__cfOC7jYg03KIf6fr2sAKRvxDgpKjo0</recordid><startdate>20171020</startdate><enddate>20171020</enddate><creator>Zavabeti, Ali</creator><creator>Ou, Jian Zhen</creator><creator>Carey, Benjamin J.</creator><creator>Syed, Nitu</creator><creator>Orrell-Trigg, Rebecca</creator><creator>Mayes, Edwin L. H.</creator><creator>Xu, Chenglong</creator><creator>Kavehei, Omid</creator><creator>O’Mullane, Anthony P.</creator><creator>Kaner, Richard B.</creator><creator>Kalantar-zadeh, Kourosh</creator><creator>Daeneke, Torben</creator><general>American Association for the Advancement of Science</general><general>The American Association for the Advancement of Science</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SN</scope><scope>7SP</scope><scope>7SR</scope><scope>7SS</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7TM</scope><scope>7U5</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-4775-127X</orcidid><orcidid>https://orcid.org/0000-0002-1361-7259</orcidid><orcidid>https://orcid.org/0000-0002-2753-5553</orcidid><orcidid>https://orcid.org/0000-0003-0345-4924</orcidid><orcidid>https://orcid.org/0000-0003-1142-8646</orcidid><orcidid>https://orcid.org/0000-0002-5860-8938</orcidid><orcidid>https://orcid.org/0000-0003-1720-1725</orcidid><orcidid>https://orcid.org/0000-0002-6330-1973</orcidid><orcidid>https://orcid.org/0000-0002-6971-2634</orcidid><orcidid>https://orcid.org/0000-0001-9294-5180</orcidid><orcidid>https://orcid.org/0000-0001-6109-132X</orcidid></search><sort><creationdate>20171020</creationdate><title>A liquid metal reaction environment for the room-temperature synthesis of atomically thin metal oxides</title><author>Zavabeti, Ali ; Ou, Jian Zhen ; Carey, Benjamin J. ; Syed, Nitu ; Orrell-Trigg, Rebecca ; Mayes, Edwin L. H. ; Xu, Chenglong ; Kavehei, Omid ; O’Mullane, Anthony P. ; Kaner, Richard B. ; Kalantar-zadeh, Kourosh ; Daeneke, Torben</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c491t-5ce7b97e35b1787afd53b19471a3ae3778b5777f9c113fa2e245d2027da8a0713</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Aluminum oxide</topic><topic>Chemical synthesis</topic><topic>Crystals</topic><topic>Electronics</topic><topic>Electronics industry</topic><topic>Gadolinium</topic><topic>Gadolinium oxides</topic><topic>Gallium</topic><topic>Gallium oxides</topic><topic>Hafnium</topic><topic>Hafnium oxide</topic><topic>Heavy metals</topic><topic>Liquid metals</topic><topic>Manufacturing Industry</topic><topic>Metal sheets</topic><topic>Metals</topic><topic>Nanomaterials</topic><topic>Nanotechnology</topic><topic>Oxides</topic><topic>Room temperature</topic><topic>Substrates</topic><topic>Thin films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zavabeti, Ali</creatorcontrib><creatorcontrib>Ou, Jian Zhen</creatorcontrib><creatorcontrib>Carey, Benjamin J.</creatorcontrib><creatorcontrib>Syed, Nitu</creatorcontrib><creatorcontrib>Orrell-Trigg, Rebecca</creatorcontrib><creatorcontrib>Mayes, Edwin L. H.</creatorcontrib><creatorcontrib>Xu, Chenglong</creatorcontrib><creatorcontrib>Kavehei, Omid</creatorcontrib><creatorcontrib>O’Mullane, Anthony P.</creatorcontrib><creatorcontrib>Kaner, Richard B.</creatorcontrib><creatorcontrib>Kalantar-zadeh, Kourosh</creatorcontrib><creatorcontrib>Daeneke, Torben</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Ecology Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Science (American Association for the Advancement of Science)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zavabeti, Ali</au><au>Ou, Jian Zhen</au><au>Carey, Benjamin J.</au><au>Syed, Nitu</au><au>Orrell-Trigg, Rebecca</au><au>Mayes, Edwin L. H.</au><au>Xu, Chenglong</au><au>Kavehei, Omid</au><au>O’Mullane, Anthony P.</au><au>Kaner, Richard B.</au><au>Kalantar-zadeh, Kourosh</au><au>Daeneke, Torben</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A liquid metal reaction environment for the room-temperature synthesis of atomically thin metal oxides</atitle><jtitle>Science (American Association for the Advancement of Science)</jtitle><addtitle>Science</addtitle><date>2017-10-20</date><risdate>2017</risdate><volume>358</volume><issue>6361</issue><spage>332</spage><epage>335</epage><pages>332-335</pages><issn>0036-8075</issn><eissn>1095-9203</eissn><abstract>Two-dimensional (2D) oxides have a wide variety of applications in electronics and other technologies. However, many oxides are not easy to synthesize as 2D materials through conventional methods. We used nontoxic eutectic gallium-based alloys as a reaction solvent and co-alloyed desired metals into the melt. On the basis of thermodynamic considerations, we predicted the composition of the self-limiting interfacial oxide. We isolated the surface oxide as a 2D layer, either on substrates or in suspension. This enabled us to produce extremely thin subnanometer layers of HfO₂, Al₂O₃, and Gd₂O₃. The liquid metal–based reaction route can be used to create 2D materials that were previously inaccessible with preexisting methods. The work introduces room-temperature liquid metals as a reaction environment for the synthesis of oxide nanomaterials with low dimensionality.</abstract><cop>United States</cop><pub>American Association for the Advancement of Science</pub><pmid>29051372</pmid><doi>10.1126/science.aao4249</doi><tpages>4</tpages><orcidid>https://orcid.org/0000-0002-4775-127X</orcidid><orcidid>https://orcid.org/0000-0002-1361-7259</orcidid><orcidid>https://orcid.org/0000-0002-2753-5553</orcidid><orcidid>https://orcid.org/0000-0003-0345-4924</orcidid><orcidid>https://orcid.org/0000-0003-1142-8646</orcidid><orcidid>https://orcid.org/0000-0002-5860-8938</orcidid><orcidid>https://orcid.org/0000-0003-1720-1725</orcidid><orcidid>https://orcid.org/0000-0002-6330-1973</orcidid><orcidid>https://orcid.org/0000-0002-6971-2634</orcidid><orcidid>https://orcid.org/0000-0001-9294-5180</orcidid><orcidid>https://orcid.org/0000-0001-6109-132X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0036-8075 |
ispartof | Science (American Association for the Advancement of Science), 2017-10, Vol.358 (6361), p.332-335 |
issn | 0036-8075 1095-9203 |
language | eng |
recordid | cdi_proquest_miscellaneous_1954065299 |
source | American Association for the Advancement of Science; JSTOR Archival Journals and Primary Sources Collection; Alma/SFX Local Collection |
subjects | Aluminum oxide Chemical synthesis Crystals Electronics Electronics industry Gadolinium Gadolinium oxides Gallium Gallium oxides Hafnium Hafnium oxide Heavy metals Liquid metals Manufacturing Industry Metal sheets Metals Nanomaterials Nanotechnology Oxides Room temperature Substrates Thin films |
title | A liquid metal reaction environment for the room-temperature synthesis of atomically thin metal oxides |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T09%3A21%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20liquid%20metal%20reaction%20environment%20for%20the%20room-temperature%20synthesis%20of%20atomically%20thin%20metal%20oxides&rft.jtitle=Science%20(American%20Association%20for%20the%20Advancement%20of%20Science)&rft.au=Zavabeti,%20Ali&rft.date=2017-10-20&rft.volume=358&rft.issue=6361&rft.spage=332&rft.epage=335&rft.pages=332-335&rft.issn=0036-8075&rft.eissn=1095-9203&rft_id=info:doi/10.1126/science.aao4249&rft_dat=%3Cjstor_proqu%3E26400558%3C/jstor_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c491t-5ce7b97e35b1787afd53b19471a3ae3778b5777f9c113fa2e245d2027da8a0713%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1975001413&rft_id=info:pmid/29051372&rft_jstor_id=26400558&rfr_iscdi=true |