Loading…

A liquid metal reaction environment for the room-temperature synthesis of atomically thin metal oxides

Two-dimensional (2D) oxides have a wide variety of applications in electronics and other technologies. However, many oxides are not easy to synthesize as 2D materials through conventional methods. We used nontoxic eutectic gallium-based alloys as a reaction solvent and co-alloyed desired metals into...

Full description

Saved in:
Bibliographic Details
Published in:Science (American Association for the Advancement of Science) 2017-10, Vol.358 (6361), p.332-335
Main Authors: Zavabeti, Ali, Ou, Jian Zhen, Carey, Benjamin J., Syed, Nitu, Orrell-Trigg, Rebecca, Mayes, Edwin L. H., Xu, Chenglong, Kavehei, Omid, O’Mullane, Anthony P., Kaner, Richard B., Kalantar-zadeh, Kourosh, Daeneke, Torben
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c491t-5ce7b97e35b1787afd53b19471a3ae3778b5777f9c113fa2e245d2027da8a0713
cites cdi_FETCH-LOGICAL-c491t-5ce7b97e35b1787afd53b19471a3ae3778b5777f9c113fa2e245d2027da8a0713
container_end_page 335
container_issue 6361
container_start_page 332
container_title Science (American Association for the Advancement of Science)
container_volume 358
creator Zavabeti, Ali
Ou, Jian Zhen
Carey, Benjamin J.
Syed, Nitu
Orrell-Trigg, Rebecca
Mayes, Edwin L. H.
Xu, Chenglong
Kavehei, Omid
O’Mullane, Anthony P.
Kaner, Richard B.
Kalantar-zadeh, Kourosh
Daeneke, Torben
description Two-dimensional (2D) oxides have a wide variety of applications in electronics and other technologies. However, many oxides are not easy to synthesize as 2D materials through conventional methods. We used nontoxic eutectic gallium-based alloys as a reaction solvent and co-alloyed desired metals into the melt. On the basis of thermodynamic considerations, we predicted the composition of the self-limiting interfacial oxide. We isolated the surface oxide as a 2D layer, either on substrates or in suspension. This enabled us to produce extremely thin subnanometer layers of HfO₂, Al₂O₃, and Gd₂O₃. The liquid metal–based reaction route can be used to create 2D materials that were previously inaccessible with preexisting methods. The work introduces room-temperature liquid metals as a reaction environment for the synthesis of oxide nanomaterials with low dimensionality.
doi_str_mv 10.1126/science.aao4249
format article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1954065299</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26400558</jstor_id><sourcerecordid>26400558</sourcerecordid><originalsourceid>FETCH-LOGICAL-c491t-5ce7b97e35b1787afd53b19471a3ae3778b5777f9c113fa2e245d2027da8a0713</originalsourceid><addsrcrecordid>eNpd0c9L5DAUB_CwKOv44-xJCXjxUn1JmklzFHFXQfCyey5p-spmaJMxSWXnvzfLVBc8BfI--RLel5BzBjeM8fVtsg69xRtjQs1r_Y2sGGhZaQ7igKwAxLpqQMkjcpzSBqDMtPhOjrgGyYTiKzLc0dG9zq6nE2Yz0ojGZhc8Rf_mYvAT-kyHEGn-gzSGMFUZpy1Gk-eINO18uU8u0TBQk8PkrBnHXcHOL4Hhr-sxnZLDwYwJz5bzhPz-8fDr_rF6fvn5dH_3XNlas1xJi6rTCoXsmGqUGXopOqZrxYwwKJRqOqmUGrRlTAyGI69lz4Gr3jQGFBMn5Hqfu43hdcaU28kli-NoPIY5tUzLGtaSa13o1Re6CXP05XdFKQnAaiaKut0rG0NKEYd2G91k4q5l0P6roF0qaJcKyovLJXfuJuw__cfOC7jYg03KIf6fr2sAKRvxDgpKjo0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1975001413</pqid></control><display><type>article</type><title>A liquid metal reaction environment for the room-temperature synthesis of atomically thin metal oxides</title><source>American Association for the Advancement of Science</source><source>JSTOR Archival Journals and Primary Sources Collection</source><source>Alma/SFX Local Collection</source><creator>Zavabeti, Ali ; Ou, Jian Zhen ; Carey, Benjamin J. ; Syed, Nitu ; Orrell-Trigg, Rebecca ; Mayes, Edwin L. H. ; Xu, Chenglong ; Kavehei, Omid ; O’Mullane, Anthony P. ; Kaner, Richard B. ; Kalantar-zadeh, Kourosh ; Daeneke, Torben</creator><creatorcontrib>Zavabeti, Ali ; Ou, Jian Zhen ; Carey, Benjamin J. ; Syed, Nitu ; Orrell-Trigg, Rebecca ; Mayes, Edwin L. H. ; Xu, Chenglong ; Kavehei, Omid ; O’Mullane, Anthony P. ; Kaner, Richard B. ; Kalantar-zadeh, Kourosh ; Daeneke, Torben</creatorcontrib><description>Two-dimensional (2D) oxides have a wide variety of applications in electronics and other technologies. However, many oxides are not easy to synthesize as 2D materials through conventional methods. We used nontoxic eutectic gallium-based alloys as a reaction solvent and co-alloyed desired metals into the melt. On the basis of thermodynamic considerations, we predicted the composition of the self-limiting interfacial oxide. We isolated the surface oxide as a 2D layer, either on substrates or in suspension. This enabled us to produce extremely thin subnanometer layers of HfO₂, Al₂O₃, and Gd₂O₃. The liquid metal–based reaction route can be used to create 2D materials that were previously inaccessible with preexisting methods. The work introduces room-temperature liquid metals as a reaction environment for the synthesis of oxide nanomaterials with low dimensionality.</description><identifier>ISSN: 0036-8075</identifier><identifier>EISSN: 1095-9203</identifier><identifier>DOI: 10.1126/science.aao4249</identifier><identifier>PMID: 29051372</identifier><language>eng</language><publisher>United States: American Association for the Advancement of Science</publisher><subject>Aluminum oxide ; Chemical synthesis ; Crystals ; Electronics ; Electronics industry ; Gadolinium ; Gadolinium oxides ; Gallium ; Gallium oxides ; Hafnium ; Hafnium oxide ; Heavy metals ; Liquid metals ; Manufacturing Industry ; Metal sheets ; Metals ; Nanomaterials ; Nanotechnology ; Oxides ; Room temperature ; Substrates ; Thin films</subject><ispartof>Science (American Association for the Advancement of Science), 2017-10, Vol.358 (6361), p.332-335</ispartof><rights>Copyright © 2017 by the American Association for the Advancement of Science</rights><rights>Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.</rights><rights>Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c491t-5ce7b97e35b1787afd53b19471a3ae3778b5777f9c113fa2e245d2027da8a0713</citedby><cites>FETCH-LOGICAL-c491t-5ce7b97e35b1787afd53b19471a3ae3778b5777f9c113fa2e245d2027da8a0713</cites><orcidid>0000-0002-4775-127X ; 0000-0002-1361-7259 ; 0000-0002-2753-5553 ; 0000-0003-0345-4924 ; 0000-0003-1142-8646 ; 0000-0002-5860-8938 ; 0000-0003-1720-1725 ; 0000-0002-6330-1973 ; 0000-0002-6971-2634 ; 0000-0001-9294-5180 ; 0000-0001-6109-132X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26400558$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26400558$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,2884,2885,27924,27925,58238,58471</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29051372$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zavabeti, Ali</creatorcontrib><creatorcontrib>Ou, Jian Zhen</creatorcontrib><creatorcontrib>Carey, Benjamin J.</creatorcontrib><creatorcontrib>Syed, Nitu</creatorcontrib><creatorcontrib>Orrell-Trigg, Rebecca</creatorcontrib><creatorcontrib>Mayes, Edwin L. H.</creatorcontrib><creatorcontrib>Xu, Chenglong</creatorcontrib><creatorcontrib>Kavehei, Omid</creatorcontrib><creatorcontrib>O’Mullane, Anthony P.</creatorcontrib><creatorcontrib>Kaner, Richard B.</creatorcontrib><creatorcontrib>Kalantar-zadeh, Kourosh</creatorcontrib><creatorcontrib>Daeneke, Torben</creatorcontrib><title>A liquid metal reaction environment for the room-temperature synthesis of atomically thin metal oxides</title><title>Science (American Association for the Advancement of Science)</title><addtitle>Science</addtitle><description>Two-dimensional (2D) oxides have a wide variety of applications in electronics and other technologies. However, many oxides are not easy to synthesize as 2D materials through conventional methods. We used nontoxic eutectic gallium-based alloys as a reaction solvent and co-alloyed desired metals into the melt. On the basis of thermodynamic considerations, we predicted the composition of the self-limiting interfacial oxide. We isolated the surface oxide as a 2D layer, either on substrates or in suspension. This enabled us to produce extremely thin subnanometer layers of HfO₂, Al₂O₃, and Gd₂O₃. The liquid metal–based reaction route can be used to create 2D materials that were previously inaccessible with preexisting methods. The work introduces room-temperature liquid metals as a reaction environment for the synthesis of oxide nanomaterials with low dimensionality.</description><subject>Aluminum oxide</subject><subject>Chemical synthesis</subject><subject>Crystals</subject><subject>Electronics</subject><subject>Electronics industry</subject><subject>Gadolinium</subject><subject>Gadolinium oxides</subject><subject>Gallium</subject><subject>Gallium oxides</subject><subject>Hafnium</subject><subject>Hafnium oxide</subject><subject>Heavy metals</subject><subject>Liquid metals</subject><subject>Manufacturing Industry</subject><subject>Metal sheets</subject><subject>Metals</subject><subject>Nanomaterials</subject><subject>Nanotechnology</subject><subject>Oxides</subject><subject>Room temperature</subject><subject>Substrates</subject><subject>Thin films</subject><issn>0036-8075</issn><issn>1095-9203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNpd0c9L5DAUB_CwKOv44-xJCXjxUn1JmklzFHFXQfCyey5p-spmaJMxSWXnvzfLVBc8BfI--RLel5BzBjeM8fVtsg69xRtjQs1r_Y2sGGhZaQ7igKwAxLpqQMkjcpzSBqDMtPhOjrgGyYTiKzLc0dG9zq6nE2Yz0ojGZhc8Rf_mYvAT-kyHEGn-gzSGMFUZpy1Gk-eINO18uU8u0TBQk8PkrBnHXcHOL4Hhr-sxnZLDwYwJz5bzhPz-8fDr_rF6fvn5dH_3XNlas1xJi6rTCoXsmGqUGXopOqZrxYwwKJRqOqmUGrRlTAyGI69lz4Gr3jQGFBMn5Hqfu43hdcaU28kli-NoPIY5tUzLGtaSa13o1Re6CXP05XdFKQnAaiaKut0rG0NKEYd2G91k4q5l0P6roF0qaJcKyovLJXfuJuw__cfOC7jYg03KIf6fr2sAKRvxDgpKjo0</recordid><startdate>20171020</startdate><enddate>20171020</enddate><creator>Zavabeti, Ali</creator><creator>Ou, Jian Zhen</creator><creator>Carey, Benjamin J.</creator><creator>Syed, Nitu</creator><creator>Orrell-Trigg, Rebecca</creator><creator>Mayes, Edwin L. H.</creator><creator>Xu, Chenglong</creator><creator>Kavehei, Omid</creator><creator>O’Mullane, Anthony P.</creator><creator>Kaner, Richard B.</creator><creator>Kalantar-zadeh, Kourosh</creator><creator>Daeneke, Torben</creator><general>American Association for the Advancement of Science</general><general>The American Association for the Advancement of Science</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SN</scope><scope>7SP</scope><scope>7SR</scope><scope>7SS</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7TM</scope><scope>7U5</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-4775-127X</orcidid><orcidid>https://orcid.org/0000-0002-1361-7259</orcidid><orcidid>https://orcid.org/0000-0002-2753-5553</orcidid><orcidid>https://orcid.org/0000-0003-0345-4924</orcidid><orcidid>https://orcid.org/0000-0003-1142-8646</orcidid><orcidid>https://orcid.org/0000-0002-5860-8938</orcidid><orcidid>https://orcid.org/0000-0003-1720-1725</orcidid><orcidid>https://orcid.org/0000-0002-6330-1973</orcidid><orcidid>https://orcid.org/0000-0002-6971-2634</orcidid><orcidid>https://orcid.org/0000-0001-9294-5180</orcidid><orcidid>https://orcid.org/0000-0001-6109-132X</orcidid></search><sort><creationdate>20171020</creationdate><title>A liquid metal reaction environment for the room-temperature synthesis of atomically thin metal oxides</title><author>Zavabeti, Ali ; Ou, Jian Zhen ; Carey, Benjamin J. ; Syed, Nitu ; Orrell-Trigg, Rebecca ; Mayes, Edwin L. H. ; Xu, Chenglong ; Kavehei, Omid ; O’Mullane, Anthony P. ; Kaner, Richard B. ; Kalantar-zadeh, Kourosh ; Daeneke, Torben</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c491t-5ce7b97e35b1787afd53b19471a3ae3778b5777f9c113fa2e245d2027da8a0713</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Aluminum oxide</topic><topic>Chemical synthesis</topic><topic>Crystals</topic><topic>Electronics</topic><topic>Electronics industry</topic><topic>Gadolinium</topic><topic>Gadolinium oxides</topic><topic>Gallium</topic><topic>Gallium oxides</topic><topic>Hafnium</topic><topic>Hafnium oxide</topic><topic>Heavy metals</topic><topic>Liquid metals</topic><topic>Manufacturing Industry</topic><topic>Metal sheets</topic><topic>Metals</topic><topic>Nanomaterials</topic><topic>Nanotechnology</topic><topic>Oxides</topic><topic>Room temperature</topic><topic>Substrates</topic><topic>Thin films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zavabeti, Ali</creatorcontrib><creatorcontrib>Ou, Jian Zhen</creatorcontrib><creatorcontrib>Carey, Benjamin J.</creatorcontrib><creatorcontrib>Syed, Nitu</creatorcontrib><creatorcontrib>Orrell-Trigg, Rebecca</creatorcontrib><creatorcontrib>Mayes, Edwin L. H.</creatorcontrib><creatorcontrib>Xu, Chenglong</creatorcontrib><creatorcontrib>Kavehei, Omid</creatorcontrib><creatorcontrib>O’Mullane, Anthony P.</creatorcontrib><creatorcontrib>Kaner, Richard B.</creatorcontrib><creatorcontrib>Kalantar-zadeh, Kourosh</creatorcontrib><creatorcontrib>Daeneke, Torben</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Ecology Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Science (American Association for the Advancement of Science)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zavabeti, Ali</au><au>Ou, Jian Zhen</au><au>Carey, Benjamin J.</au><au>Syed, Nitu</au><au>Orrell-Trigg, Rebecca</au><au>Mayes, Edwin L. H.</au><au>Xu, Chenglong</au><au>Kavehei, Omid</au><au>O’Mullane, Anthony P.</au><au>Kaner, Richard B.</au><au>Kalantar-zadeh, Kourosh</au><au>Daeneke, Torben</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A liquid metal reaction environment for the room-temperature synthesis of atomically thin metal oxides</atitle><jtitle>Science (American Association for the Advancement of Science)</jtitle><addtitle>Science</addtitle><date>2017-10-20</date><risdate>2017</risdate><volume>358</volume><issue>6361</issue><spage>332</spage><epage>335</epage><pages>332-335</pages><issn>0036-8075</issn><eissn>1095-9203</eissn><abstract>Two-dimensional (2D) oxides have a wide variety of applications in electronics and other technologies. However, many oxides are not easy to synthesize as 2D materials through conventional methods. We used nontoxic eutectic gallium-based alloys as a reaction solvent and co-alloyed desired metals into the melt. On the basis of thermodynamic considerations, we predicted the composition of the self-limiting interfacial oxide. We isolated the surface oxide as a 2D layer, either on substrates or in suspension. This enabled us to produce extremely thin subnanometer layers of HfO₂, Al₂O₃, and Gd₂O₃. The liquid metal–based reaction route can be used to create 2D materials that were previously inaccessible with preexisting methods. The work introduces room-temperature liquid metals as a reaction environment for the synthesis of oxide nanomaterials with low dimensionality.</abstract><cop>United States</cop><pub>American Association for the Advancement of Science</pub><pmid>29051372</pmid><doi>10.1126/science.aao4249</doi><tpages>4</tpages><orcidid>https://orcid.org/0000-0002-4775-127X</orcidid><orcidid>https://orcid.org/0000-0002-1361-7259</orcidid><orcidid>https://orcid.org/0000-0002-2753-5553</orcidid><orcidid>https://orcid.org/0000-0003-0345-4924</orcidid><orcidid>https://orcid.org/0000-0003-1142-8646</orcidid><orcidid>https://orcid.org/0000-0002-5860-8938</orcidid><orcidid>https://orcid.org/0000-0003-1720-1725</orcidid><orcidid>https://orcid.org/0000-0002-6330-1973</orcidid><orcidid>https://orcid.org/0000-0002-6971-2634</orcidid><orcidid>https://orcid.org/0000-0001-9294-5180</orcidid><orcidid>https://orcid.org/0000-0001-6109-132X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0036-8075
ispartof Science (American Association for the Advancement of Science), 2017-10, Vol.358 (6361), p.332-335
issn 0036-8075
1095-9203
language eng
recordid cdi_proquest_miscellaneous_1954065299
source American Association for the Advancement of Science; JSTOR Archival Journals and Primary Sources Collection; Alma/SFX Local Collection
subjects Aluminum oxide
Chemical synthesis
Crystals
Electronics
Electronics industry
Gadolinium
Gadolinium oxides
Gallium
Gallium oxides
Hafnium
Hafnium oxide
Heavy metals
Liquid metals
Manufacturing Industry
Metal sheets
Metals
Nanomaterials
Nanotechnology
Oxides
Room temperature
Substrates
Thin films
title A liquid metal reaction environment for the room-temperature synthesis of atomically thin metal oxides
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T09%3A21%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20liquid%20metal%20reaction%20environment%20for%20the%20room-temperature%20synthesis%20of%20atomically%20thin%20metal%20oxides&rft.jtitle=Science%20(American%20Association%20for%20the%20Advancement%20of%20Science)&rft.au=Zavabeti,%20Ali&rft.date=2017-10-20&rft.volume=358&rft.issue=6361&rft.spage=332&rft.epage=335&rft.pages=332-335&rft.issn=0036-8075&rft.eissn=1095-9203&rft_id=info:doi/10.1126/science.aao4249&rft_dat=%3Cjstor_proqu%3E26400558%3C/jstor_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c491t-5ce7b97e35b1787afd53b19471a3ae3778b5777f9c113fa2e245d2027da8a0713%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1975001413&rft_id=info:pmid/29051372&rft_jstor_id=26400558&rfr_iscdi=true