Loading…
Genetic Studies of the {szligbeta}-Hairpin Loop of Rous Sarcoma Virus Capsid Protein
The first few residues of the Rous sarcoma virus (RSV) CA protein comprise a structurally dynamic region that forms part of a Gag-Gag interface in immature virus particles. Dissociation of this interaction during maturation allows refolding and formation of a {szligbeta}-hairpin structure important...
Saved in:
Published in: | Journal of virology 2007-02, Vol.81 (3), p.1288-1296 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 1296 |
container_issue | 3 |
container_start_page | 1288 |
container_title | Journal of virology |
container_volume | 81 |
creator | Spidel, Jared L Wilson, Carol B Craven, Rebecca C Wills, John W |
description | The first few residues of the Rous sarcoma virus (RSV) CA protein comprise a structurally dynamic region that forms part of a Gag-Gag interface in immature virus particles. Dissociation of this interaction during maturation allows refolding and formation of a {szligbeta}-hairpin structure important for assembly of CA monomers into the mature capsid shell. A consensus binding site for the cellular Ubc9 protein was previously identified within this region, suggesting that binding of Ubc9 and subsequent small ubiquitin-like modifier protein 1 (SUMO-1) modification of CA may play a role either in regulating the assembly activity of CA in immature particles or mature cores or in controlling postentry function(s) during the establishment of infection. In the present study, mutations designed to eliminate the consensus binding site were used to dissect the potentially overlapping functions of these residues. The resulting replication defects could not be traced to a failure to form particles of normal composition but, rather, to a deficit in genome replication. Genetic suppressors of two detrimental {szligbeta}-hairpin mutations improved infectivity without restoring the consensus site or creating a novel one elsewhere. Optimal restoration of infectivity to a Lys-to-Arg mutant required a combination of secondary changes, one on the surface of each domain of CA. Rather than arguing for a critical role of Ubc9 and SUMO in RSV replication, these findings provide strong support for a structural role of the N-terminal residues and a particularly striking example of long-range interactions between regions of CA in achieving a functional core competent for genome replication. |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_miscellaneous_19541461</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>19541461</sourcerecordid><originalsourceid>FETCH-proquest_miscellaneous_195414613</originalsourceid><addsrcrecordid>eNqNjL0KwjAURoMoWH_eIZNbIGlTaWfxZ3AQLeImsV71SmxqbroovrsKPoDTx-EcvhaLlMwzkaZKt1kkZRyLNMl2XdYjukqptB7riBVzqCBgyTehOSIQdyceLsCf9LB4PkAwL7Ew6Gus-NK5-uvXriG-Mb50N8O36D80MTXhka-8C4DVgHVOxhIMf9tno9m0mCxE7d29AQr7G1IJ1poKPl97lada6bFK_g7fOWFEwA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>19541461</pqid></control><display><type>article</type><title>Genetic Studies of the {szligbeta}-Hairpin Loop of Rous Sarcoma Virus Capsid Protein</title><source>American Society for Microbiology</source><source>PubMed Central (PMC)</source><creator>Spidel, Jared L ; Wilson, Carol B ; Craven, Rebecca C ; Wills, John W</creator><creatorcontrib>Spidel, Jared L ; Wilson, Carol B ; Craven, Rebecca C ; Wills, John W</creatorcontrib><description>The first few residues of the Rous sarcoma virus (RSV) CA protein comprise a structurally dynamic region that forms part of a Gag-Gag interface in immature virus particles. Dissociation of this interaction during maturation allows refolding and formation of a {szligbeta}-hairpin structure important for assembly of CA monomers into the mature capsid shell. A consensus binding site for the cellular Ubc9 protein was previously identified within this region, suggesting that binding of Ubc9 and subsequent small ubiquitin-like modifier protein 1 (SUMO-1) modification of CA may play a role either in regulating the assembly activity of CA in immature particles or mature cores or in controlling postentry function(s) during the establishment of infection. In the present study, mutations designed to eliminate the consensus binding site were used to dissect the potentially overlapping functions of these residues. The resulting replication defects could not be traced to a failure to form particles of normal composition but, rather, to a deficit in genome replication. Genetic suppressors of two detrimental {szligbeta}-hairpin mutations improved infectivity without restoring the consensus site or creating a novel one elsewhere. Optimal restoration of infectivity to a Lys-to-Arg mutant required a combination of secondary changes, one on the surface of each domain of CA. Rather than arguing for a critical role of Ubc9 and SUMO in RSV replication, these findings provide strong support for a structural role of the N-terminal residues and a particularly striking example of long-range interactions between regions of CA in achieving a functional core competent for genome replication.</description><identifier>ISSN: 0022-538X</identifier><identifier>EISSN: 1098-5514</identifier><language>eng</language><subject>Rous sarcoma virus</subject><ispartof>Journal of virology, 2007-02, Vol.81 (3), p.1288-1296</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784</link.rule.ids></links><search><creatorcontrib>Spidel, Jared L</creatorcontrib><creatorcontrib>Wilson, Carol B</creatorcontrib><creatorcontrib>Craven, Rebecca C</creatorcontrib><creatorcontrib>Wills, John W</creatorcontrib><title>Genetic Studies of the {szligbeta}-Hairpin Loop of Rous Sarcoma Virus Capsid Protein</title><title>Journal of virology</title><description>The first few residues of the Rous sarcoma virus (RSV) CA protein comprise a structurally dynamic region that forms part of a Gag-Gag interface in immature virus particles. Dissociation of this interaction during maturation allows refolding and formation of a {szligbeta}-hairpin structure important for assembly of CA monomers into the mature capsid shell. A consensus binding site for the cellular Ubc9 protein was previously identified within this region, suggesting that binding of Ubc9 and subsequent small ubiquitin-like modifier protein 1 (SUMO-1) modification of CA may play a role either in regulating the assembly activity of CA in immature particles or mature cores or in controlling postentry function(s) during the establishment of infection. In the present study, mutations designed to eliminate the consensus binding site were used to dissect the potentially overlapping functions of these residues. The resulting replication defects could not be traced to a failure to form particles of normal composition but, rather, to a deficit in genome replication. Genetic suppressors of two detrimental {szligbeta}-hairpin mutations improved infectivity without restoring the consensus site or creating a novel one elsewhere. Optimal restoration of infectivity to a Lys-to-Arg mutant required a combination of secondary changes, one on the surface of each domain of CA. Rather than arguing for a critical role of Ubc9 and SUMO in RSV replication, these findings provide strong support for a structural role of the N-terminal residues and a particularly striking example of long-range interactions between regions of CA in achieving a functional core competent for genome replication.</description><subject>Rous sarcoma virus</subject><issn>0022-538X</issn><issn>1098-5514</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNqNjL0KwjAURoMoWH_eIZNbIGlTaWfxZ3AQLeImsV71SmxqbroovrsKPoDTx-EcvhaLlMwzkaZKt1kkZRyLNMl2XdYjukqptB7riBVzqCBgyTehOSIQdyceLsCf9LB4PkAwL7Ew6Gus-NK5-uvXriG-Mb50N8O36D80MTXhka-8C4DVgHVOxhIMf9tno9m0mCxE7d29AQr7G1IJ1poKPl97lada6bFK_g7fOWFEwA</recordid><startdate>20070201</startdate><enddate>20070201</enddate><creator>Spidel, Jared L</creator><creator>Wilson, Carol B</creator><creator>Craven, Rebecca C</creator><creator>Wills, John W</creator><scope>7U9</scope><scope>8FD</scope><scope>FR3</scope><scope>H94</scope><scope>P64</scope><scope>RC3</scope></search><sort><creationdate>20070201</creationdate><title>Genetic Studies of the {szligbeta}-Hairpin Loop of Rous Sarcoma Virus Capsid Protein</title><author>Spidel, Jared L ; Wilson, Carol B ; Craven, Rebecca C ; Wills, John W</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_miscellaneous_195414613</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Rous sarcoma virus</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Spidel, Jared L</creatorcontrib><creatorcontrib>Wilson, Carol B</creatorcontrib><creatorcontrib>Craven, Rebecca C</creatorcontrib><creatorcontrib>Wills, John W</creatorcontrib><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><jtitle>Journal of virology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Spidel, Jared L</au><au>Wilson, Carol B</au><au>Craven, Rebecca C</au><au>Wills, John W</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Genetic Studies of the {szligbeta}-Hairpin Loop of Rous Sarcoma Virus Capsid Protein</atitle><jtitle>Journal of virology</jtitle><date>2007-02-01</date><risdate>2007</risdate><volume>81</volume><issue>3</issue><spage>1288</spage><epage>1296</epage><pages>1288-1296</pages><issn>0022-538X</issn><eissn>1098-5514</eissn><abstract>The first few residues of the Rous sarcoma virus (RSV) CA protein comprise a structurally dynamic region that forms part of a Gag-Gag interface in immature virus particles. Dissociation of this interaction during maturation allows refolding and formation of a {szligbeta}-hairpin structure important for assembly of CA monomers into the mature capsid shell. A consensus binding site for the cellular Ubc9 protein was previously identified within this region, suggesting that binding of Ubc9 and subsequent small ubiquitin-like modifier protein 1 (SUMO-1) modification of CA may play a role either in regulating the assembly activity of CA in immature particles or mature cores or in controlling postentry function(s) during the establishment of infection. In the present study, mutations designed to eliminate the consensus binding site were used to dissect the potentially overlapping functions of these residues. The resulting replication defects could not be traced to a failure to form particles of normal composition but, rather, to a deficit in genome replication. Genetic suppressors of two detrimental {szligbeta}-hairpin mutations improved infectivity without restoring the consensus site or creating a novel one elsewhere. Optimal restoration of infectivity to a Lys-to-Arg mutant required a combination of secondary changes, one on the surface of each domain of CA. Rather than arguing for a critical role of Ubc9 and SUMO in RSV replication, these findings provide strong support for a structural role of the N-terminal residues and a particularly striking example of long-range interactions between regions of CA in achieving a functional core competent for genome replication.</abstract></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-538X |
ispartof | Journal of virology, 2007-02, Vol.81 (3), p.1288-1296 |
issn | 0022-538X 1098-5514 |
language | eng |
recordid | cdi_proquest_miscellaneous_19541461 |
source | American Society for Microbiology; PubMed Central (PMC) |
subjects | Rous sarcoma virus |
title | Genetic Studies of the {szligbeta}-Hairpin Loop of Rous Sarcoma Virus Capsid Protein |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T15%3A33%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Genetic%20Studies%20of%20the%20%7Bszligbeta%7D-Hairpin%20Loop%20of%20Rous%20Sarcoma%20Virus%20Capsid%20Protein&rft.jtitle=Journal%20of%20virology&rft.au=Spidel,%20Jared%20L&rft.date=2007-02-01&rft.volume=81&rft.issue=3&rft.spage=1288&rft.epage=1296&rft.pages=1288-1296&rft.issn=0022-538X&rft.eissn=1098-5514&rft_id=info:doi/&rft_dat=%3Cproquest%3E19541461%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_miscellaneous_195414613%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=19541461&rft_id=info:pmid/&rfr_iscdi=true |