Loading…

Enhancement of land surface information and its impact on atmospheric modeling in the Heihe River Basin, northwest China

With increasing computational resources, atmospheric/environmental models continue to run at finer‐grid spacing that can resolve land surface characteristics, such as topography, land use/land cover, and soil texture. This paper assesses the improvement in land surface information data sets and its...

Full description

Saved in:
Bibliographic Details
Published in:Journal of Geophysical Research: Atmospheres 2008-10, Vol.113 (D20), p.n/a
Main Authors: Gao, Yanhong, Chen, Fei, Barlage, Michael, Liu, Wei, Cheng, Guodong, Li, Xin, Yu, Ye, Ran, Youhua, Li, Haiying, Peng, Hongchun, Ma, Mingguo
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c4499-2e6115e9558ea256292964872b75645f728393893f6a1394514141f42c1bebb73
cites cdi_FETCH-LOGICAL-c4499-2e6115e9558ea256292964872b75645f728393893f6a1394514141f42c1bebb73
container_end_page n/a
container_issue D20
container_start_page
container_title Journal of Geophysical Research: Atmospheres
container_volume 113
creator Gao, Yanhong
Chen, Fei
Barlage, Michael
Liu, Wei
Cheng, Guodong
Li, Xin
Yu, Ye
Ran, Youhua
Li, Haiying
Peng, Hongchun
Ma, Mingguo
description With increasing computational resources, atmospheric/environmental models continue to run at finer‐grid spacing that can resolve land surface characteristics, such as topography, land use/land cover, and soil texture. This paper assesses the improvement in land surface information data sets and its impact on atmospheric modeling. The study focuses on the Heihe River Basin (HRB) in northwestern China. Fine‐scale, remotely sensed, and in situ land surface data in HRB are derived and compared with the global data sets used in most mesoscale models. The incorporation of these fine‐scale land surface data, compared to those currently used in MM5, yields substantially improved HRB land surface data sets. HRB local and regional data sets and the global land data set are used in a nonhydrostatic mesoscale model (MM5) to investigate the influences of land surface uncertainty on meteorological modeling in the lower atmosphere. Main results suggest the following: (1) enhanced land data sets have a stronger impact on atmospheric water vapor fields in the lower boundary layer than other meteorological fields. Soil texture data greatly impacts the local precipitation simulation and landuse data improves the air temperature simulation in the lower atmosphere; (2) generally, the average land surface temperature biases are reduced using the enhanced land surface information, but the low bias in zones with higher elevation and high bias in zones with lower elevation still persist; (3) the wet bias over rugged terrain and dry bias in the simulated water vapor in the flat plains are both reduced. Area mean bias of simulated accumulated monthly precipitation is greatly reduced using the enhanced soil data. Convective available potential energy was larger in the HRB mountain regions using the default land data, while it was decreased using the enhanced ones; (4) analysis of the correlation coefficient between simulation bias and the geographic features shows that there are some patterns in the simulation bias distribution. Generally, larger bias still exists in the foothills of the mountains.
doi_str_mv 10.1029/2008JD010359
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_19547241</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1730061361</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4499-2e6115e9558ea256292964872b75645f728393893f6a1394514141f42c1bebb73</originalsourceid><addsrcrecordid>eNp9kU1vEzEQhi1EJaK2N36ALyAO3eLvXR8hLSlVClIAwc1y3DFr2LWDvenHv6-jVBWneiSPNXre15oZhF5TckoJ0-8ZId3lGaGES_0CzRiVqmGMsJdoRqjoGsJY-wodl_KH1COkEoTO0N157G10MEKccPJ4sPEal2321gEO0ac82imkiHf1MBUcxo11Fa2VaUxl00MODo_pGoYQf1cJnnrAFxDqvQo3kPFHW0I8wTHlqb-FMuF5H6I9QgfeDgWOH_Mh-vHp_Pv8oll-XXyef1g2TgitGwaKUglayg4sk4ppppXoWrZuawfSt6zjmneae2Up10JSUcML5uga1uuWH6K3e99NTv-29XszhuJgqI1C2hZDtRQtE7SC754HW06Iolzt0JM96nIqJYM3mxxGm-8NJWa3DPP_Mir-5tHZFmcHn-vAQ3nSMNJpxaiqHN9zt2GA-2c9zeVidUaF5jv3Zq8KZYK7J5XNf41qeSvNzy8Lo359W16t6oPzB8rgpR0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1730061361</pqid></control><display><type>article</type><title>Enhancement of land surface information and its impact on atmospheric modeling in the Heihe River Basin, northwest China</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><source>Wiley-Blackwell AGU Digital Archive</source><creator>Gao, Yanhong ; Chen, Fei ; Barlage, Michael ; Liu, Wei ; Cheng, Guodong ; Li, Xin ; Yu, Ye ; Ran, Youhua ; Li, Haiying ; Peng, Hongchun ; Ma, Mingguo</creator><creatorcontrib>Gao, Yanhong ; Chen, Fei ; Barlage, Michael ; Liu, Wei ; Cheng, Guodong ; Li, Xin ; Yu, Ye ; Ran, Youhua ; Li, Haiying ; Peng, Hongchun ; Ma, Mingguo</creatorcontrib><description>With increasing computational resources, atmospheric/environmental models continue to run at finer‐grid spacing that can resolve land surface characteristics, such as topography, land use/land cover, and soil texture. This paper assesses the improvement in land surface information data sets and its impact on atmospheric modeling. The study focuses on the Heihe River Basin (HRB) in northwestern China. Fine‐scale, remotely sensed, and in situ land surface data in HRB are derived and compared with the global data sets used in most mesoscale models. The incorporation of these fine‐scale land surface data, compared to those currently used in MM5, yields substantially improved HRB land surface data sets. HRB local and regional data sets and the global land data set are used in a nonhydrostatic mesoscale model (MM5) to investigate the influences of land surface uncertainty on meteorological modeling in the lower atmosphere. Main results suggest the following: (1) enhanced land data sets have a stronger impact on atmospheric water vapor fields in the lower boundary layer than other meteorological fields. Soil texture data greatly impacts the local precipitation simulation and landuse data improves the air temperature simulation in the lower atmosphere; (2) generally, the average land surface temperature biases are reduced using the enhanced land surface information, but the low bias in zones with higher elevation and high bias in zones with lower elevation still persist; (3) the wet bias over rugged terrain and dry bias in the simulated water vapor in the flat plains are both reduced. Area mean bias of simulated accumulated monthly precipitation is greatly reduced using the enhanced soil data. Convective available potential energy was larger in the HRB mountain regions using the default land data, while it was decreased using the enhanced ones; (4) analysis of the correlation coefficient between simulation bias and the geographic features shows that there are some patterns in the simulation bias distribution. Generally, larger bias still exists in the foothills of the mountains.</description><identifier>ISSN: 0148-0227</identifier><identifier>ISSN: 2169-897X</identifier><identifier>EISSN: 2156-2202</identifier><identifier>EISSN: 2169-8996</identifier><identifier>DOI: 10.1029/2008JD010359</identifier><language>eng</language><publisher>Washington, DC: Blackwell Publishing Ltd</publisher><subject>atmospheric modeling ; Atmospherics ; Bias ; Earth sciences ; Earth, ocean, space ; Exact sciences and technology ; Land ; land surface ; land use ; Mathematical models ; Mountains ; precipitation ; soil texture ; Surface layer ; Texture ; vegetation coverage fraction</subject><ispartof>Journal of Geophysical Research: Atmospheres, 2008-10, Vol.113 (D20), p.n/a</ispartof><rights>Copyright 2008 by the American Geophysical Union.</rights><rights>2009 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4499-2e6115e9558ea256292964872b75645f728393893f6a1394514141f42c1bebb73</citedby><cites>FETCH-LOGICAL-c4499-2e6115e9558ea256292964872b75645f728393893f6a1394514141f42c1bebb73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1029%2F2008JD010359$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1029%2F2008JD010359$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,11514,27924,27925,46468,46892</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=20896216$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Gao, Yanhong</creatorcontrib><creatorcontrib>Chen, Fei</creatorcontrib><creatorcontrib>Barlage, Michael</creatorcontrib><creatorcontrib>Liu, Wei</creatorcontrib><creatorcontrib>Cheng, Guodong</creatorcontrib><creatorcontrib>Li, Xin</creatorcontrib><creatorcontrib>Yu, Ye</creatorcontrib><creatorcontrib>Ran, Youhua</creatorcontrib><creatorcontrib>Li, Haiying</creatorcontrib><creatorcontrib>Peng, Hongchun</creatorcontrib><creatorcontrib>Ma, Mingguo</creatorcontrib><title>Enhancement of land surface information and its impact on atmospheric modeling in the Heihe River Basin, northwest China</title><title>Journal of Geophysical Research: Atmospheres</title><addtitle>J. Geophys. Res</addtitle><description>With increasing computational resources, atmospheric/environmental models continue to run at finer‐grid spacing that can resolve land surface characteristics, such as topography, land use/land cover, and soil texture. This paper assesses the improvement in land surface information data sets and its impact on atmospheric modeling. The study focuses on the Heihe River Basin (HRB) in northwestern China. Fine‐scale, remotely sensed, and in situ land surface data in HRB are derived and compared with the global data sets used in most mesoscale models. The incorporation of these fine‐scale land surface data, compared to those currently used in MM5, yields substantially improved HRB land surface data sets. HRB local and regional data sets and the global land data set are used in a nonhydrostatic mesoscale model (MM5) to investigate the influences of land surface uncertainty on meteorological modeling in the lower atmosphere. Main results suggest the following: (1) enhanced land data sets have a stronger impact on atmospheric water vapor fields in the lower boundary layer than other meteorological fields. Soil texture data greatly impacts the local precipitation simulation and landuse data improves the air temperature simulation in the lower atmosphere; (2) generally, the average land surface temperature biases are reduced using the enhanced land surface information, but the low bias in zones with higher elevation and high bias in zones with lower elevation still persist; (3) the wet bias over rugged terrain and dry bias in the simulated water vapor in the flat plains are both reduced. Area mean bias of simulated accumulated monthly precipitation is greatly reduced using the enhanced soil data. Convective available potential energy was larger in the HRB mountain regions using the default land data, while it was decreased using the enhanced ones; (4) analysis of the correlation coefficient between simulation bias and the geographic features shows that there are some patterns in the simulation bias distribution. Generally, larger bias still exists in the foothills of the mountains.</description><subject>atmospheric modeling</subject><subject>Atmospherics</subject><subject>Bias</subject><subject>Earth sciences</subject><subject>Earth, ocean, space</subject><subject>Exact sciences and technology</subject><subject>Land</subject><subject>land surface</subject><subject>land use</subject><subject>Mathematical models</subject><subject>Mountains</subject><subject>precipitation</subject><subject>soil texture</subject><subject>Surface layer</subject><subject>Texture</subject><subject>vegetation coverage fraction</subject><issn>0148-0227</issn><issn>2169-897X</issn><issn>2156-2202</issn><issn>2169-8996</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNp9kU1vEzEQhi1EJaK2N36ALyAO3eLvXR8hLSlVClIAwc1y3DFr2LWDvenHv6-jVBWneiSPNXre15oZhF5TckoJ0-8ZId3lGaGES_0CzRiVqmGMsJdoRqjoGsJY-wodl_KH1COkEoTO0N157G10MEKccPJ4sPEal2321gEO0ac82imkiHf1MBUcxo11Fa2VaUxl00MODo_pGoYQf1cJnnrAFxDqvQo3kPFHW0I8wTHlqb-FMuF5H6I9QgfeDgWOH_Mh-vHp_Pv8oll-XXyef1g2TgitGwaKUglayg4sk4ppppXoWrZuawfSt6zjmneae2Up10JSUcML5uga1uuWH6K3e99NTv-29XszhuJgqI1C2hZDtRQtE7SC754HW06Iolzt0JM96nIqJYM3mxxGm-8NJWa3DPP_Mir-5tHZFmcHn-vAQ3nSMNJpxaiqHN9zt2GA-2c9zeVidUaF5jv3Zq8KZYK7J5XNf41qeSvNzy8Lo359W16t6oPzB8rgpR0</recordid><startdate>20081027</startdate><enddate>20081027</enddate><creator>Gao, Yanhong</creator><creator>Chen, Fei</creator><creator>Barlage, Michael</creator><creator>Liu, Wei</creator><creator>Cheng, Guodong</creator><creator>Li, Xin</creator><creator>Yu, Ye</creator><creator>Ran, Youhua</creator><creator>Li, Haiying</creator><creator>Peng, Hongchun</creator><creator>Ma, Mingguo</creator><general>Blackwell Publishing Ltd</general><general>American Geophysical Union</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope><scope>7QH</scope><scope>7TG</scope><scope>7TV</scope><scope>7UA</scope><scope>C1K</scope><scope>KL.</scope></search><sort><creationdate>20081027</creationdate><title>Enhancement of land surface information and its impact on atmospheric modeling in the Heihe River Basin, northwest China</title><author>Gao, Yanhong ; Chen, Fei ; Barlage, Michael ; Liu, Wei ; Cheng, Guodong ; Li, Xin ; Yu, Ye ; Ran, Youhua ; Li, Haiying ; Peng, Hongchun ; Ma, Mingguo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4499-2e6115e9558ea256292964872b75645f728393893f6a1394514141f42c1bebb73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>atmospheric modeling</topic><topic>Atmospherics</topic><topic>Bias</topic><topic>Earth sciences</topic><topic>Earth, ocean, space</topic><topic>Exact sciences and technology</topic><topic>Land</topic><topic>land surface</topic><topic>land use</topic><topic>Mathematical models</topic><topic>Mountains</topic><topic>precipitation</topic><topic>soil texture</topic><topic>Surface layer</topic><topic>Texture</topic><topic>vegetation coverage fraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gao, Yanhong</creatorcontrib><creatorcontrib>Chen, Fei</creatorcontrib><creatorcontrib>Barlage, Michael</creatorcontrib><creatorcontrib>Liu, Wei</creatorcontrib><creatorcontrib>Cheng, Guodong</creatorcontrib><creatorcontrib>Li, Xin</creatorcontrib><creatorcontrib>Yu, Ye</creatorcontrib><creatorcontrib>Ran, Youhua</creatorcontrib><creatorcontrib>Li, Haiying</creatorcontrib><creatorcontrib>Peng, Hongchun</creatorcontrib><creatorcontrib>Ma, Mingguo</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Aqualine</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Pollution Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><jtitle>Journal of Geophysical Research: Atmospheres</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gao, Yanhong</au><au>Chen, Fei</au><au>Barlage, Michael</au><au>Liu, Wei</au><au>Cheng, Guodong</au><au>Li, Xin</au><au>Yu, Ye</au><au>Ran, Youhua</au><au>Li, Haiying</au><au>Peng, Hongchun</au><au>Ma, Mingguo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhancement of land surface information and its impact on atmospheric modeling in the Heihe River Basin, northwest China</atitle><jtitle>Journal of Geophysical Research: Atmospheres</jtitle><addtitle>J. Geophys. Res</addtitle><date>2008-10-27</date><risdate>2008</risdate><volume>113</volume><issue>D20</issue><epage>n/a</epage><issn>0148-0227</issn><issn>2169-897X</issn><eissn>2156-2202</eissn><eissn>2169-8996</eissn><abstract>With increasing computational resources, atmospheric/environmental models continue to run at finer‐grid spacing that can resolve land surface characteristics, such as topography, land use/land cover, and soil texture. This paper assesses the improvement in land surface information data sets and its impact on atmospheric modeling. The study focuses on the Heihe River Basin (HRB) in northwestern China. Fine‐scale, remotely sensed, and in situ land surface data in HRB are derived and compared with the global data sets used in most mesoscale models. The incorporation of these fine‐scale land surface data, compared to those currently used in MM5, yields substantially improved HRB land surface data sets. HRB local and regional data sets and the global land data set are used in a nonhydrostatic mesoscale model (MM5) to investigate the influences of land surface uncertainty on meteorological modeling in the lower atmosphere. Main results suggest the following: (1) enhanced land data sets have a stronger impact on atmospheric water vapor fields in the lower boundary layer than other meteorological fields. Soil texture data greatly impacts the local precipitation simulation and landuse data improves the air temperature simulation in the lower atmosphere; (2) generally, the average land surface temperature biases are reduced using the enhanced land surface information, but the low bias in zones with higher elevation and high bias in zones with lower elevation still persist; (3) the wet bias over rugged terrain and dry bias in the simulated water vapor in the flat plains are both reduced. Area mean bias of simulated accumulated monthly precipitation is greatly reduced using the enhanced soil data. Convective available potential energy was larger in the HRB mountain regions using the default land data, while it was decreased using the enhanced ones; (4) analysis of the correlation coefficient between simulation bias and the geographic features shows that there are some patterns in the simulation bias distribution. Generally, larger bias still exists in the foothills of the mountains.</abstract><cop>Washington, DC</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1029/2008JD010359</doi><tpages>19</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0148-0227
ispartof Journal of Geophysical Research: Atmospheres, 2008-10, Vol.113 (D20), p.n/a
issn 0148-0227
2169-897X
2156-2202
2169-8996
language eng
recordid cdi_proquest_miscellaneous_19547241
source Wiley-Blackwell Read & Publish Collection; Wiley-Blackwell AGU Digital Archive
subjects atmospheric modeling
Atmospherics
Bias
Earth sciences
Earth, ocean, space
Exact sciences and technology
Land
land surface
land use
Mathematical models
Mountains
precipitation
soil texture
Surface layer
Texture
vegetation coverage fraction
title Enhancement of land surface information and its impact on atmospheric modeling in the Heihe River Basin, northwest China
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T23%3A35%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhancement%20of%20land%20surface%20information%20and%20its%20impact%20on%20atmospheric%20modeling%20in%20the%20Heihe%20River%20Basin,%20northwest%20China&rft.jtitle=Journal%20of%20Geophysical%20Research:%20Atmospheres&rft.au=Gao,%20Yanhong&rft.date=2008-10-27&rft.volume=113&rft.issue=D20&rft.epage=n/a&rft.issn=0148-0227&rft.eissn=2156-2202&rft_id=info:doi/10.1029/2008JD010359&rft_dat=%3Cproquest_cross%3E1730061361%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4499-2e6115e9558ea256292964872b75645f728393893f6a1394514141f42c1bebb73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1730061361&rft_id=info:pmid/&rfr_iscdi=true