Loading…
A novel approach for automatic detection of Atrial Fibrillation based on Inter Beat Intervals and Support Vector Machine
Atrial fibrillation (AF) is the most common cardiac arrhythmia associated with a major economic burden for the society. Automatic detection of AF in long term recordings can efficiently assist in early diagnosis and management of comorbidities associated with AF. This study presents a novel approach...
Saved in:
Main Authors: | , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Atrial fibrillation (AF) is the most common cardiac arrhythmia associated with a major economic burden for the society. Automatic detection of AF in long term recordings can efficiently assist in early diagnosis and management of comorbidities associated with AF. This study presents a novel approach for AF detection based on Inter Beat Intervals (IBI) extracted from long term electrocardiogram (ECG) recordings. Five time-domain features are extracted from the IBIs and a Support Vector Machine (SVM) is used for classification. The results are compared to a state of the art algorithm based on raw ECG. Both algorithms are evaluated on the MIT-BIH Atrial Fibrillation database resulting in equally high classification performance (Sensitivity ≥ 95%). The proposed approach requires detection of R-peaks in the ECG signal but allows for significantly reduced computation time without loss of performance. |
---|---|
ISSN: | 1557-170X 2694-0604 |
DOI: | 10.1109/EMBC.2017.8037253 |