Loading…
Development of a smartphone-based pulse oximeter with adaptive SNR/power balancing
Millions worldwide suffer from diseases that exhibit early warnings signs that can be detected by standard clinical-grade diagnostic tools. Unfortunately, such tools are often prohibitively expensive to the developing world leading to inadequate healthcare and high mortality rates. To address this p...
Saved in:
Main Authors: | , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Millions worldwide suffer from diseases that exhibit early warnings signs that can be detected by standard clinical-grade diagnostic tools. Unfortunately, such tools are often prohibitively expensive to the developing world leading to inadequate healthcare and high mortality rates. To address this problem, a smartphone-based pulse oximeter is presented that interfaces with the phone through the audio jack, enabling point-of-care measurements of heart rate (HR) and oxygen saturation (SpO 2 ). The device is designed to utilize existing phone resources (e.g., the processor, battery, and memory) resulting in a more portable and inexpensive diagnostic tool than standalone equivalents. By adaptively tuning the LED driving signal, the device is less dependent on phone-specific audio jack properties than prior audio jack-based work making it universally compatible with all smartphones. We demonstrate that the pulse oximeter can adaptively optimize the signal-to-noise ratio (SNR) within the power constraints of a mobile phone ( |
---|---|
ISSN: | 1557-170X 2694-0604 |
DOI: | 10.1109/EMBC.2017.8037561 |