Loading…
Automatic Atrial Fibrillation detection: A novel approach using discrete wavelet transform and heart rate variability
Early detection of Atrial Fibrillation (AF) is crucial in order to prevent acute and chronic cardiac rhythm disorders. In this study, a novel method for robust automatic AF detection (AAFD) is proposed by combining atrial activity (AA) and heart rate variability (HRV), which could potentially be use...
Saved in:
Main Authors: | , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c279t-dda914eaa7c52ad05574ad25d6ebd91bf33e07631a416a6ff25b0f34cbe00fb23 |
---|---|
cites | |
container_end_page | 3984 |
container_issue | |
container_start_page | 3981 |
container_title | |
container_volume | 2017 |
creator | Bruun, Iben H. Hissabu, Semira M. S. Poulsen, Erik S. Puthusserypady, Sadasivan |
description | Early detection of Atrial Fibrillation (AF) is crucial in order to prevent acute and chronic cardiac rhythm disorders. In this study, a novel method for robust automatic AF detection (AAFD) is proposed by combining atrial activity (AA) and heart rate variability (HRV), which could potentially be used as a screening tool for patients suspected to have AF. The method includes an automatic peak detection prior to the feature extraction, as well as a noise cancellation technique followed by a bagged tree classification. Simulation studies on the MIT-BIH Atrial Fibrillation database was performed to evaluate the performance of the proposed method. Results from these extensive studies showed very promising results, with an average sensitivity of 96.51%, a specificity of 99.19%, and an overall accuracy of 98.22%. |
doi_str_mv | 10.1109/EMBC.2017.8037728 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_miscellaneous_1955063298</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8037728</ieee_id><sourcerecordid>1955063298</sourcerecordid><originalsourceid>FETCH-LOGICAL-c279t-dda914eaa7c52ad05574ad25d6ebd91bf33e07631a416a6ff25b0f34cbe00fb23</originalsourceid><addsrcrecordid>eNotkM1OwzAQhA0CQSl9AMTFRy4payexY26hagGpiAtI3KJN7FCj_BTHKerbY9SedrXzaTSzhNwwmDMG6n75-riYc2BynkEsJc9OyEzJjKWggGeg-CmZcKGSCAQkZ2TC0lRGTMLnJbkahm8AwUTCLsglV4GQQk3ImI--b9HbiubeWWzoypbONk049R3Vxpvqf3ugOe36nWkobreux2pDx8F2X1TboXKBor8YVOOpd9gNde9aip2mG4POU4cB2GHwL21j_f6anNfYDGZ2nFPysVq-L56j9dvTyyJfRxWXykdao2KJQZRVylFDqJOg5qkWptSKlXUcm1AjZpgwgaKueVpCHSdVaQDqksdTcnfwDZF_RjP4og1xTWjXmX4cCqbSFETMVRbQ2wNqjTHF1tkW3b44_jn-A07EcAg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>1955063298</pqid></control><display><type>conference_proceeding</type><title>Automatic Atrial Fibrillation detection: A novel approach using discrete wavelet transform and heart rate variability</title><source>IEEE Xplore All Conference Series</source><creator>Bruun, Iben H. ; Hissabu, Semira M. S. ; Poulsen, Erik S. ; Puthusserypady, Sadasivan</creator><creatorcontrib>Bruun, Iben H. ; Hissabu, Semira M. S. ; Poulsen, Erik S. ; Puthusserypady, Sadasivan</creatorcontrib><description>Early detection of Atrial Fibrillation (AF) is crucial in order to prevent acute and chronic cardiac rhythm disorders. In this study, a novel method for robust automatic AF detection (AAFD) is proposed by combining atrial activity (AA) and heart rate variability (HRV), which could potentially be used as a screening tool for patients suspected to have AF. The method includes an automatic peak detection prior to the feature extraction, as well as a noise cancellation technique followed by a bagged tree classification. Simulation studies on the MIT-BIH Atrial Fibrillation database was performed to evaluate the performance of the proposed method. Results from these extensive studies showed very promising results, with an average sensitivity of 96.51%, a specificity of 99.19%, and an overall accuracy of 98.22%.</description><identifier>ISSN: 1557-170X</identifier><identifier>EISSN: 2694-0604</identifier><identifier>EISBN: 9781509028092</identifier><identifier>EISBN: 1509028099</identifier><identifier>DOI: 10.1109/EMBC.2017.8037728</identifier><identifier>PMID: 29060769</identifier><language>eng</language><publisher>IEEE</publisher><subject>Discrete wavelet transforms ; Electrocardiography ; Entropy ; Feature extraction ; Heart rate variability ; Rail to rail inputs</subject><ispartof>2017 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 2017, Vol.2017, p.3981-3984</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c279t-dda914eaa7c52ad05574ad25d6ebd91bf33e07631a416a6ff25b0f34cbe00fb23</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>309,310,314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Bruun, Iben H.</creatorcontrib><creatorcontrib>Hissabu, Semira M. S.</creatorcontrib><creatorcontrib>Poulsen, Erik S.</creatorcontrib><creatorcontrib>Puthusserypady, Sadasivan</creatorcontrib><title>Automatic Atrial Fibrillation detection: A novel approach using discrete wavelet transform and heart rate variability</title><title>2017 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)</title><addtitle>EMBC</addtitle><description>Early detection of Atrial Fibrillation (AF) is crucial in order to prevent acute and chronic cardiac rhythm disorders. In this study, a novel method for robust automatic AF detection (AAFD) is proposed by combining atrial activity (AA) and heart rate variability (HRV), which could potentially be used as a screening tool for patients suspected to have AF. The method includes an automatic peak detection prior to the feature extraction, as well as a noise cancellation technique followed by a bagged tree classification. Simulation studies on the MIT-BIH Atrial Fibrillation database was performed to evaluate the performance of the proposed method. Results from these extensive studies showed very promising results, with an average sensitivity of 96.51%, a specificity of 99.19%, and an overall accuracy of 98.22%.</description><subject>Discrete wavelet transforms</subject><subject>Electrocardiography</subject><subject>Entropy</subject><subject>Feature extraction</subject><subject>Heart rate variability</subject><subject>Rail to rail inputs</subject><issn>1557-170X</issn><issn>2694-0604</issn><isbn>9781509028092</isbn><isbn>1509028099</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2017</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotkM1OwzAQhA0CQSl9AMTFRy4payexY26hagGpiAtI3KJN7FCj_BTHKerbY9SedrXzaTSzhNwwmDMG6n75-riYc2BynkEsJc9OyEzJjKWggGeg-CmZcKGSCAQkZ2TC0lRGTMLnJbkahm8AwUTCLsglV4GQQk3ImI--b9HbiubeWWzoypbONk049R3Vxpvqf3ugOe36nWkobreux2pDx8F2X1TboXKBor8YVOOpd9gNde9aip2mG4POU4cB2GHwL21j_f6anNfYDGZ2nFPysVq-L56j9dvTyyJfRxWXykdao2KJQZRVylFDqJOg5qkWptSKlXUcm1AjZpgwgaKueVpCHSdVaQDqksdTcnfwDZF_RjP4og1xTWjXmX4cCqbSFETMVRbQ2wNqjTHF1tkW3b44_jn-A07EcAg</recordid><startdate>201707</startdate><enddate>201707</enddate><creator>Bruun, Iben H.</creator><creator>Hissabu, Semira M. S.</creator><creator>Poulsen, Erik S.</creator><creator>Puthusserypady, Sadasivan</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope><scope>7X8</scope></search><sort><creationdate>201707</creationdate><title>Automatic Atrial Fibrillation detection: A novel approach using discrete wavelet transform and heart rate variability</title><author>Bruun, Iben H. ; Hissabu, Semira M. S. ; Poulsen, Erik S. ; Puthusserypady, Sadasivan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c279t-dda914eaa7c52ad05574ad25d6ebd91bf33e07631a416a6ff25b0f34cbe00fb23</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Discrete wavelet transforms</topic><topic>Electrocardiography</topic><topic>Entropy</topic><topic>Feature extraction</topic><topic>Heart rate variability</topic><topic>Rail to rail inputs</topic><toplevel>online_resources</toplevel><creatorcontrib>Bruun, Iben H.</creatorcontrib><creatorcontrib>Hissabu, Semira M. S.</creatorcontrib><creatorcontrib>Poulsen, Erik S.</creatorcontrib><creatorcontrib>Puthusserypady, Sadasivan</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection><collection>MEDLINE - Academic</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bruun, Iben H.</au><au>Hissabu, Semira M. S.</au><au>Poulsen, Erik S.</au><au>Puthusserypady, Sadasivan</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Automatic Atrial Fibrillation detection: A novel approach using discrete wavelet transform and heart rate variability</atitle><btitle>2017 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)</btitle><stitle>EMBC</stitle><date>2017-07</date><risdate>2017</risdate><volume>2017</volume><spage>3981</spage><epage>3984</epage><pages>3981-3984</pages><issn>1557-170X</issn><eissn>2694-0604</eissn><eisbn>9781509028092</eisbn><eisbn>1509028099</eisbn><abstract>Early detection of Atrial Fibrillation (AF) is crucial in order to prevent acute and chronic cardiac rhythm disorders. In this study, a novel method for robust automatic AF detection (AAFD) is proposed by combining atrial activity (AA) and heart rate variability (HRV), which could potentially be used as a screening tool for patients suspected to have AF. The method includes an automatic peak detection prior to the feature extraction, as well as a noise cancellation technique followed by a bagged tree classification. Simulation studies on the MIT-BIH Atrial Fibrillation database was performed to evaluate the performance of the proposed method. Results from these extensive studies showed very promising results, with an average sensitivity of 96.51%, a specificity of 99.19%, and an overall accuracy of 98.22%.</abstract><pub>IEEE</pub><pmid>29060769</pmid><doi>10.1109/EMBC.2017.8037728</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1557-170X |
ispartof | 2017 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 2017, Vol.2017, p.3981-3984 |
issn | 1557-170X 2694-0604 |
language | eng |
recordid | cdi_proquest_miscellaneous_1955063298 |
source | IEEE Xplore All Conference Series |
subjects | Discrete wavelet transforms Electrocardiography Entropy Feature extraction Heart rate variability Rail to rail inputs |
title | Automatic Atrial Fibrillation detection: A novel approach using discrete wavelet transform and heart rate variability |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T00%3A24%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Automatic%20Atrial%20Fibrillation%20detection:%20A%20novel%20approach%20using%20discrete%20wavelet%20transform%20and%20heart%20rate%20variability&rft.btitle=2017%2039th%20Annual%20International%20Conference%20of%20the%20IEEE%20Engineering%20in%20Medicine%20and%20Biology%20Society%20(EMBC)&rft.au=Bruun,%20Iben%20H.&rft.date=2017-07&rft.volume=2017&rft.spage=3981&rft.epage=3984&rft.pages=3981-3984&rft.issn=1557-170X&rft.eissn=2694-0604&rft_id=info:doi/10.1109/EMBC.2017.8037728&rft.eisbn=9781509028092&rft.eisbn_list=1509028099&rft_dat=%3Cproquest_ieee_%3E1955063298%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c279t-dda914eaa7c52ad05574ad25d6ebd91bf33e07631a416a6ff25b0f34cbe00fb23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1955063298&rft_id=info:pmid/29060769&rft_ieee_id=8037728&rfr_iscdi=true |