Loading…

Loss of cytosolic fructose-1,6-bisphosphatase limits photosynthetic sucrose synthesis and causes severe growth retardations in rice (Oryza sativa)

During photosynthesis, triose-phosphates (trioseP) exported from the chloroplast to the cytosol are converted to sucrose via cytosolic fructose-1,6-bisphosphatase (cFBPase). Expression analysis in rice suggests that OscFBP1 plays a major role in the cytosolic conversion of trioseP to sucrose in leav...

Full description

Saved in:
Bibliographic Details
Published in:Plant, cell and environment cell and environment, 2008-12, Vol.31 (12), p.1851-1863
Main Authors: LEE, SANG-KYU, JEON, JONG-SEONG, BÖRNKE, FREDERIK, VOLL, LARS, CHO, JUNG-IL, GOH, CHANG-HYO, JEONG, SUK-WON, PARK, YOUN-IL, KIM, SUNG JIN, CHOI, SANG-BONG, MIYAO, AKIO, HIROCHIKA, HIROHIKO, AN, GYNHEUNG, CHO, MAN-HO, BHOO, SEONG HEE, SONNEWALD, UWE, HAHN, TAE-RYONG
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:During photosynthesis, triose-phosphates (trioseP) exported from the chloroplast to the cytosol are converted to sucrose via cytosolic fructose-1,6-bisphosphatase (cFBPase). Expression analysis in rice suggests that OscFBP1 plays a major role in the cytosolic conversion of trioseP to sucrose in leaves during the day. The isolated OscFBP1 mutants exhibited markedly decreased photosynthetic rates and severe growth retardation with reduced chlorophyll content, which results in plant death. Analysis of primary carbon metabolites revealed both significantly reduced levels of sucrose, glucose, fructose and starch in leaves of these mutants, and a high accumulation of sucrose to starch in leaves of rice plants. In the oscfbp1 mutants, products of glycolysis and the TCA cycle were significantly increased. A partitioning experiment of ¹⁴C-labelled photoassimilates revealed altered carbon distributions including a slight increase in the insoluble fraction representing transitory starch, a significant decrease in the neutral fraction corresponding to soluble sugars and a high accumulation of phosphorylated intermediates and carboxylic acid fractions in the oscfbp1 mutants. These results indicate that the impaired synthesis of sucrose in rice cannot be sufficiently compensated for by the transitory starch-mediated pathways that have been found to facilitate plant growth in the equivalent Arabidopsis mutants.
ISSN:0140-7791
1365-3040
DOI:10.1111/j.1365-3040.2008.01890.x