Loading…

Dissecting antigen processing and presentation routes in dermal vaccination strategies

The skin is an attractive site for vaccination due to its accessibility and presence of immune cells surveilling this barrier. However, knowledge of antigen processing and presentation upon dermal vaccination is sparse. In this study we determined antigen processing routes that lead to CD8+ T cell a...

Full description

Saved in:
Bibliographic Details
Published in:Vaccine 2017-12, Vol.35 (50), p.7057-7063
Main Authors: Platteel, Anouk C.M., Henri, Sandrine, Zaiss, Dietmar M., Sijts, Alice J.A.M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c440t-3ec3ef16951027ba1fe4065706c68af54e80cec8076b06ebcd509c354b8d4bd93
cites cdi_FETCH-LOGICAL-c440t-3ec3ef16951027ba1fe4065706c68af54e80cec8076b06ebcd509c354b8d4bd93
container_end_page 7063
container_issue 50
container_start_page 7057
container_title Vaccine
container_volume 35
creator Platteel, Anouk C.M.
Henri, Sandrine
Zaiss, Dietmar M.
Sijts, Alice J.A.M.
description The skin is an attractive site for vaccination due to its accessibility and presence of immune cells surveilling this barrier. However, knowledge of antigen processing and presentation upon dermal vaccination is sparse. In this study we determined antigen processing routes that lead to CD8+ T cell activation following dermal DNA tattoo immunization, exploiting a model antigen that contains an immunoproteasome-dependent epitope. In agreement with earlier reports, we found that DNA tattoo immunization of wild type (WT) mice triggered vigorous responses to the immunoproteasome-dependent model epitope, whereas gene-deficient mice lacking the immunoproteasome subunits β5i/LMP7 and β2i/MECL1 failed to respond. Unexpectedly, dermal immunization both of irradiated bone marrow (BM) reconstituted mice in which the BM transplant was of WT origin, and of WT mice transplanted with immunoproteasome subunit-deficient BM induced a CD8+ T cell response to the immunoproteasome-dependent epitope, implying that both BM and host-derived cells contributed to processing of delivered model antigen. Depletion of radiation-resistant Langerhans cells (LC) from chimeric mice did not diminish tattoo-immunization induced CD8+ T cell responses in most mice, illustrating that LC were not responsible for antigen processing and CD8+ T cell priming in tattoo-immunized hosts. We conclude that both BM and non-BM-derived cells contribute to processing and cross-presentation of antigens delivered by dermal DNA tattoo immunization.
doi_str_mv 10.1016/j.vaccine.2017.10.044
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1957486576</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0264410X17314524</els_id><sourcerecordid>1957486576</sourcerecordid><originalsourceid>FETCH-LOGICAL-c440t-3ec3ef16951027ba1fe4065706c68af54e80cec8076b06ebcd509c354b8d4bd93</originalsourceid><addsrcrecordid>eNqFkMFO3DAQhi1UBFvgEUCReuklyzixnfiEKgotEhIXQNwsx5msvNp1qMdB4u3xKlsOvfRk-fc3418fY-cclhy4ulwv36xzPuCyAt7kbAlCHLAFb5u6rCRvv7AFVEqUgsPLMftKtAYAWXN9xI4rDY3m0CzY809PhC75sCpsSH6FoXiNo0OiOerzFQlDssmPoYjjlJAKH4oe49ZuirnF_Egp2oQrj3TKDge7ITzbnyfs6fbm8fp3ef_w6-76x33phIBU1uhqHLjSkkPVdJYPKEDJBpRTrR2kwBYcuhYa1YHCzvUStKul6NpedL2uT9j3eW_u_GdCSmbryeFmYwOOExmuZSPavFFl9Ns_6HqcYsjtMqW01qKtd5ScKRdHooiDeY1-a-O74WB24s3a7MWbnfhdnMXnuYv99qnbYv859dd0Bq5mALOON4_RkPMYHPY-Zv-mH_1_vvgAHs2Xxg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1969994836</pqid></control><display><type>article</type><title>Dissecting antigen processing and presentation routes in dermal vaccination strategies</title><source>ScienceDirect Freedom Collection</source><creator>Platteel, Anouk C.M. ; Henri, Sandrine ; Zaiss, Dietmar M. ; Sijts, Alice J.A.M.</creator><creatorcontrib>Platteel, Anouk C.M. ; Henri, Sandrine ; Zaiss, Dietmar M. ; Sijts, Alice J.A.M.</creatorcontrib><description>The skin is an attractive site for vaccination due to its accessibility and presence of immune cells surveilling this barrier. However, knowledge of antigen processing and presentation upon dermal vaccination is sparse. In this study we determined antigen processing routes that lead to CD8+ T cell activation following dermal DNA tattoo immunization, exploiting a model antigen that contains an immunoproteasome-dependent epitope. In agreement with earlier reports, we found that DNA tattoo immunization of wild type (WT) mice triggered vigorous responses to the immunoproteasome-dependent model epitope, whereas gene-deficient mice lacking the immunoproteasome subunits β5i/LMP7 and β2i/MECL1 failed to respond. Unexpectedly, dermal immunization both of irradiated bone marrow (BM) reconstituted mice in which the BM transplant was of WT origin, and of WT mice transplanted with immunoproteasome subunit-deficient BM induced a CD8+ T cell response to the immunoproteasome-dependent epitope, implying that both BM and host-derived cells contributed to processing of delivered model antigen. Depletion of radiation-resistant Langerhans cells (LC) from chimeric mice did not diminish tattoo-immunization induced CD8+ T cell responses in most mice, illustrating that LC were not responsible for antigen processing and CD8+ T cell priming in tattoo-immunized hosts. We conclude that both BM and non-BM-derived cells contribute to processing and cross-presentation of antigens delivered by dermal DNA tattoo immunization.</description><identifier>ISSN: 0264-410X</identifier><identifier>EISSN: 1873-2518</identifier><identifier>DOI: 10.1016/j.vaccine.2017.10.044</identifier><identifier>PMID: 29079107</identifier><language>eng</language><publisher>Netherlands: Elsevier Ltd</publisher><subject>Adenoviruses ; Animals ; Antigen Presentation ; Antigen processing ; Antigens ; Bone marrow ; Bone marrow transplantation ; CD8 antigen ; CD8 T cell ; CD8-Positive T-Lymphocytes - immunology ; Cell activation ; Deoxyribonucleic acid ; Dermal DNA tattoo immunization ; DNA ; Epitopes ; Immune system ; Immunization ; Injections, Intradermal ; Langerhans cells ; Lymphatic system ; Lymphocytes ; Lymphocytes T ; MHC class I ; Mice ; Mice, Inbred C57BL ; Priming ; Proteasome ; Radiation tolerance ; Skin ; T cell receptors ; Tattoos ; Vaccination ; Vaccines ; Vaccines, DNA - administration &amp; dosage ; Vaccines, DNA - immunology ; Viral Vaccines - administration &amp; dosage ; Viral Vaccines - immunology</subject><ispartof>Vaccine, 2017-12, Vol.35 (50), p.7057-7063</ispartof><rights>2017 The Author(s)</rights><rights>Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.</rights><rights>Copyright Elsevier Limited Dec 15, 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c440t-3ec3ef16951027ba1fe4065706c68af54e80cec8076b06ebcd509c354b8d4bd93</citedby><cites>FETCH-LOGICAL-c440t-3ec3ef16951027ba1fe4065706c68af54e80cec8076b06ebcd509c354b8d4bd93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29079107$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Platteel, Anouk C.M.</creatorcontrib><creatorcontrib>Henri, Sandrine</creatorcontrib><creatorcontrib>Zaiss, Dietmar M.</creatorcontrib><creatorcontrib>Sijts, Alice J.A.M.</creatorcontrib><title>Dissecting antigen processing and presentation routes in dermal vaccination strategies</title><title>Vaccine</title><addtitle>Vaccine</addtitle><description>The skin is an attractive site for vaccination due to its accessibility and presence of immune cells surveilling this barrier. However, knowledge of antigen processing and presentation upon dermal vaccination is sparse. In this study we determined antigen processing routes that lead to CD8+ T cell activation following dermal DNA tattoo immunization, exploiting a model antigen that contains an immunoproteasome-dependent epitope. In agreement with earlier reports, we found that DNA tattoo immunization of wild type (WT) mice triggered vigorous responses to the immunoproteasome-dependent model epitope, whereas gene-deficient mice lacking the immunoproteasome subunits β5i/LMP7 and β2i/MECL1 failed to respond. Unexpectedly, dermal immunization both of irradiated bone marrow (BM) reconstituted mice in which the BM transplant was of WT origin, and of WT mice transplanted with immunoproteasome subunit-deficient BM induced a CD8+ T cell response to the immunoproteasome-dependent epitope, implying that both BM and host-derived cells contributed to processing of delivered model antigen. Depletion of radiation-resistant Langerhans cells (LC) from chimeric mice did not diminish tattoo-immunization induced CD8+ T cell responses in most mice, illustrating that LC were not responsible for antigen processing and CD8+ T cell priming in tattoo-immunized hosts. We conclude that both BM and non-BM-derived cells contribute to processing and cross-presentation of antigens delivered by dermal DNA tattoo immunization.</description><subject>Adenoviruses</subject><subject>Animals</subject><subject>Antigen Presentation</subject><subject>Antigen processing</subject><subject>Antigens</subject><subject>Bone marrow</subject><subject>Bone marrow transplantation</subject><subject>CD8 antigen</subject><subject>CD8 T cell</subject><subject>CD8-Positive T-Lymphocytes - immunology</subject><subject>Cell activation</subject><subject>Deoxyribonucleic acid</subject><subject>Dermal DNA tattoo immunization</subject><subject>DNA</subject><subject>Epitopes</subject><subject>Immune system</subject><subject>Immunization</subject><subject>Injections, Intradermal</subject><subject>Langerhans cells</subject><subject>Lymphatic system</subject><subject>Lymphocytes</subject><subject>Lymphocytes T</subject><subject>MHC class I</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Priming</subject><subject>Proteasome</subject><subject>Radiation tolerance</subject><subject>Skin</subject><subject>T cell receptors</subject><subject>Tattoos</subject><subject>Vaccination</subject><subject>Vaccines</subject><subject>Vaccines, DNA - administration &amp; dosage</subject><subject>Vaccines, DNA - immunology</subject><subject>Viral Vaccines - administration &amp; dosage</subject><subject>Viral Vaccines - immunology</subject><issn>0264-410X</issn><issn>1873-2518</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqFkMFO3DAQhi1UBFvgEUCReuklyzixnfiEKgotEhIXQNwsx5msvNp1qMdB4u3xKlsOvfRk-fc3418fY-cclhy4ulwv36xzPuCyAt7kbAlCHLAFb5u6rCRvv7AFVEqUgsPLMftKtAYAWXN9xI4rDY3m0CzY809PhC75sCpsSH6FoXiNo0OiOerzFQlDssmPoYjjlJAKH4oe49ZuirnF_Egp2oQrj3TKDge7ITzbnyfs6fbm8fp3ef_w6-76x33phIBU1uhqHLjSkkPVdJYPKEDJBpRTrR2kwBYcuhYa1YHCzvUStKul6NpedL2uT9j3eW_u_GdCSmbryeFmYwOOExmuZSPavFFl9Ns_6HqcYsjtMqW01qKtd5ScKRdHooiDeY1-a-O74WB24s3a7MWbnfhdnMXnuYv99qnbYv859dd0Bq5mALOON4_RkPMYHPY-Zv-mH_1_vvgAHs2Xxg</recordid><startdate>20171215</startdate><enddate>20171215</enddate><creator>Platteel, Anouk C.M.</creator><creator>Henri, Sandrine</creator><creator>Zaiss, Dietmar M.</creator><creator>Sijts, Alice J.A.M.</creator><general>Elsevier Ltd</general><general>Elsevier Limited</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7RV</scope><scope>7T2</scope><scope>7T5</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88C</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9-</scope><scope>K9.</scope><scope>KB0</scope><scope>LK8</scope><scope>M0R</scope><scope>M0S</scope><scope>M0T</scope><scope>M1P</scope><scope>M2O</scope><scope>M7N</scope><scope>M7P</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope></search><sort><creationdate>20171215</creationdate><title>Dissecting antigen processing and presentation routes in dermal vaccination strategies</title><author>Platteel, Anouk C.M. ; Henri, Sandrine ; Zaiss, Dietmar M. ; Sijts, Alice J.A.M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c440t-3ec3ef16951027ba1fe4065706c68af54e80cec8076b06ebcd509c354b8d4bd93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Adenoviruses</topic><topic>Animals</topic><topic>Antigen Presentation</topic><topic>Antigen processing</topic><topic>Antigens</topic><topic>Bone marrow</topic><topic>Bone marrow transplantation</topic><topic>CD8 antigen</topic><topic>CD8 T cell</topic><topic>CD8-Positive T-Lymphocytes - immunology</topic><topic>Cell activation</topic><topic>Deoxyribonucleic acid</topic><topic>Dermal DNA tattoo immunization</topic><topic>DNA</topic><topic>Epitopes</topic><topic>Immune system</topic><topic>Immunization</topic><topic>Injections, Intradermal</topic><topic>Langerhans cells</topic><topic>Lymphatic system</topic><topic>Lymphocytes</topic><topic>Lymphocytes T</topic><topic>MHC class I</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Priming</topic><topic>Proteasome</topic><topic>Radiation tolerance</topic><topic>Skin</topic><topic>T cell receptors</topic><topic>Tattoos</topic><topic>Vaccination</topic><topic>Vaccines</topic><topic>Vaccines, DNA - administration &amp; dosage</topic><topic>Vaccines, DNA - immunology</topic><topic>Viral Vaccines - administration &amp; dosage</topic><topic>Viral Vaccines - immunology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Platteel, Anouk C.M.</creatorcontrib><creatorcontrib>Henri, Sandrine</creatorcontrib><creatorcontrib>Zaiss, Dietmar M.</creatorcontrib><creatorcontrib>Sijts, Alice J.A.M.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Health and Safety Science Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>ProQuest_Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Healthcare Administration Database (Alumni)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>Consumer Health Database (Alumni Edition)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>ProQuest Biological Science Collection</collection><collection>Consumer Health Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Healthcare Administration Database</collection><collection>PML(ProQuest Medical Library)</collection><collection>Research Library</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>ProQuest Biological Science Journals</collection><collection>Research Library (Corporate)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>Vaccine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Platteel, Anouk C.M.</au><au>Henri, Sandrine</au><au>Zaiss, Dietmar M.</au><au>Sijts, Alice J.A.M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dissecting antigen processing and presentation routes in dermal vaccination strategies</atitle><jtitle>Vaccine</jtitle><addtitle>Vaccine</addtitle><date>2017-12-15</date><risdate>2017</risdate><volume>35</volume><issue>50</issue><spage>7057</spage><epage>7063</epage><pages>7057-7063</pages><issn>0264-410X</issn><eissn>1873-2518</eissn><abstract>The skin is an attractive site for vaccination due to its accessibility and presence of immune cells surveilling this barrier. However, knowledge of antigen processing and presentation upon dermal vaccination is sparse. In this study we determined antigen processing routes that lead to CD8+ T cell activation following dermal DNA tattoo immunization, exploiting a model antigen that contains an immunoproteasome-dependent epitope. In agreement with earlier reports, we found that DNA tattoo immunization of wild type (WT) mice triggered vigorous responses to the immunoproteasome-dependent model epitope, whereas gene-deficient mice lacking the immunoproteasome subunits β5i/LMP7 and β2i/MECL1 failed to respond. Unexpectedly, dermal immunization both of irradiated bone marrow (BM) reconstituted mice in which the BM transplant was of WT origin, and of WT mice transplanted with immunoproteasome subunit-deficient BM induced a CD8+ T cell response to the immunoproteasome-dependent epitope, implying that both BM and host-derived cells contributed to processing of delivered model antigen. Depletion of radiation-resistant Langerhans cells (LC) from chimeric mice did not diminish tattoo-immunization induced CD8+ T cell responses in most mice, illustrating that LC were not responsible for antigen processing and CD8+ T cell priming in tattoo-immunized hosts. We conclude that both BM and non-BM-derived cells contribute to processing and cross-presentation of antigens delivered by dermal DNA tattoo immunization.</abstract><cop>Netherlands</cop><pub>Elsevier Ltd</pub><pmid>29079107</pmid><doi>10.1016/j.vaccine.2017.10.044</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0264-410X
ispartof Vaccine, 2017-12, Vol.35 (50), p.7057-7063
issn 0264-410X
1873-2518
language eng
recordid cdi_proquest_miscellaneous_1957486576
source ScienceDirect Freedom Collection
subjects Adenoviruses
Animals
Antigen Presentation
Antigen processing
Antigens
Bone marrow
Bone marrow transplantation
CD8 antigen
CD8 T cell
CD8-Positive T-Lymphocytes - immunology
Cell activation
Deoxyribonucleic acid
Dermal DNA tattoo immunization
DNA
Epitopes
Immune system
Immunization
Injections, Intradermal
Langerhans cells
Lymphatic system
Lymphocytes
Lymphocytes T
MHC class I
Mice
Mice, Inbred C57BL
Priming
Proteasome
Radiation tolerance
Skin
T cell receptors
Tattoos
Vaccination
Vaccines
Vaccines, DNA - administration & dosage
Vaccines, DNA - immunology
Viral Vaccines - administration & dosage
Viral Vaccines - immunology
title Dissecting antigen processing and presentation routes in dermal vaccination strategies
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T14%3A12%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dissecting%20antigen%20processing%20and%20presentation%20routes%20in%20dermal%20vaccination%20strategies&rft.jtitle=Vaccine&rft.au=Platteel,%20Anouk%20C.M.&rft.date=2017-12-15&rft.volume=35&rft.issue=50&rft.spage=7057&rft.epage=7063&rft.pages=7057-7063&rft.issn=0264-410X&rft.eissn=1873-2518&rft_id=info:doi/10.1016/j.vaccine.2017.10.044&rft_dat=%3Cproquest_cross%3E1957486576%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c440t-3ec3ef16951027ba1fe4065706c68af54e80cec8076b06ebcd509c354b8d4bd93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1969994836&rft_id=info:pmid/29079107&rfr_iscdi=true