Loading…

Methodology for optimal sizing of stand-alone photovoltaic/wind-generator systems using genetic algorithms

A methodology for optimal sizing of stand-alone PV/WG systems is presented. The purpose of the proposed methodology is to suggest, among a list of commercially available system devices, the optimal number and type of units ensuring that the 20-year round total system cost is minimized subject to the...

Full description

Saved in:
Bibliographic Details
Published in:Solar energy 2006-01, Vol.80 (9), p.1072-1088
Main Authors: Koutroulis, Eftichios, Kolokotsa, Dionissia, Potirakis, Antonis, Kalaitzakis, Kostas
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c428t-6ff6c7db95f6a778be7c752bc869820e9bfe7ce8eec07cedbe03a2eb9f5978fe3
cites cdi_FETCH-LOGICAL-c428t-6ff6c7db95f6a778be7c752bc869820e9bfe7ce8eec07cedbe03a2eb9f5978fe3
container_end_page 1088
container_issue 9
container_start_page 1072
container_title Solar energy
container_volume 80
creator Koutroulis, Eftichios
Kolokotsa, Dionissia
Potirakis, Antonis
Kalaitzakis, Kostas
description A methodology for optimal sizing of stand-alone PV/WG systems is presented. The purpose of the proposed methodology is to suggest, among a list of commercially available system devices, the optimal number and type of units ensuring that the 20-year round total system cost is minimized subject to the constraint that the load energy requirements are completely covered, resulting in zero load rejection. The 20-year round total system cost is equal to the sum of the respective components capital and maintenance costs. The cost (objective) function minimization is implemented using genetic algorithms, which, compared to conventional optimization methods such as dynamic programming and gradient techniques, have the ability to attain the global optimum with relative computational simplicity. The proposed method has been applied for the design of a power generation system which supplies a residential household. The simulation results verify that hybrid PV/WG systems feature lower system cost compared to the cases where either exclusively WG or exclusively PV sources are used.
doi_str_mv 10.1016/j.solener.2005.11.002
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_19575789</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0038092X05003713</els_id><sourcerecordid>14801118</sourcerecordid><originalsourceid>FETCH-LOGICAL-c428t-6ff6c7db95f6a778be7c752bc869820e9bfe7ce8eec07cedbe03a2eb9f5978fe3</originalsourceid><addsrcrecordid>eNqFkUFr3DAQhU1podu0P6FgCu3NjkZeW_KplJA0gZReEuhNyPJoV0ZrbTXalM2vr8wuFHrJaWD43hvmvaL4CKwGBt3lVFPwOGOsOWNtDVAzxl8VK1gLqIC34nWxYqyRFev5r7fFO6KJMRAgxaqYfmDahjH4sDmWNsQy7JPbaV-Se3bzpgy2pKTnsdI-zFjutyGFp-CTdubyj8v7zXJYp6ykIyXcUXmgRbjskzOl9psQXdru6H3xxmpP-OE8L4rHm-uHq9vq_uf3u6tv95VZc5mqztrOiHHoW9tpIeSAwoiWD0Z2veQM-8HmDUpEw_IcB2SN5jj0tu2FtNhcFF9OvvsYfh-Qkto5Mui9njEcSEHfilbI_mVwLRkAyAx--g-cwiHO-QnFmyXIhrMMtSfIxEAU0ap9zEnGowKmlp7UpM49qaUnBaByT1n3-WyuyWhvo56No39iyaTsYOG-njjM2T257ELG4ZwTcBFNUmNwL1z6C_rRryE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>231718320</pqid></control><display><type>article</type><title>Methodology for optimal sizing of stand-alone photovoltaic/wind-generator systems using genetic algorithms</title><source>ScienceDirect Freedom Collection</source><creator>Koutroulis, Eftichios ; Kolokotsa, Dionissia ; Potirakis, Antonis ; Kalaitzakis, Kostas</creator><contributor>Patel, M</contributor><creatorcontrib>Koutroulis, Eftichios ; Kolokotsa, Dionissia ; Potirakis, Antonis ; Kalaitzakis, Kostas ; Patel, M</creatorcontrib><description>A methodology for optimal sizing of stand-alone PV/WG systems is presented. The purpose of the proposed methodology is to suggest, among a list of commercially available system devices, the optimal number and type of units ensuring that the 20-year round total system cost is minimized subject to the constraint that the load energy requirements are completely covered, resulting in zero load rejection. The 20-year round total system cost is equal to the sum of the respective components capital and maintenance costs. The cost (objective) function minimization is implemented using genetic algorithms, which, compared to conventional optimization methods such as dynamic programming and gradient techniques, have the ability to attain the global optimum with relative computational simplicity. The proposed method has been applied for the design of a power generation system which supplies a residential household. The simulation results verify that hybrid PV/WG systems feature lower system cost compared to the cases where either exclusively WG or exclusively PV sources are used.</description><identifier>ISSN: 0038-092X</identifier><identifier>EISSN: 1471-1257</identifier><identifier>DOI: 10.1016/j.solener.2005.11.002</identifier><identifier>CODEN: SRENA4</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Applied sciences ; Energy ; Equipments, installations and applications ; Exact sciences and technology ; Generators ; Genetic algorithms ; Natural energy ; Photovoltaic cells ; Photovoltaic conversion ; Photovoltaic power systems ; Solar energy ; Wind energy ; Wind power ; Wind power generation</subject><ispartof>Solar energy, 2006-01, Vol.80 (9), p.1072-1088</ispartof><rights>2005 Elsevier Ltd</rights><rights>2006 INIST-CNRS</rights><rights>Copyright Pergamon Press Inc. Sep 2006</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c428t-6ff6c7db95f6a778be7c752bc869820e9bfe7ce8eec07cedbe03a2eb9f5978fe3</citedby><cites>FETCH-LOGICAL-c428t-6ff6c7db95f6a778be7c752bc869820e9bfe7ce8eec07cedbe03a2eb9f5978fe3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=18088612$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><contributor>Patel, M</contributor><creatorcontrib>Koutroulis, Eftichios</creatorcontrib><creatorcontrib>Kolokotsa, Dionissia</creatorcontrib><creatorcontrib>Potirakis, Antonis</creatorcontrib><creatorcontrib>Kalaitzakis, Kostas</creatorcontrib><title>Methodology for optimal sizing of stand-alone photovoltaic/wind-generator systems using genetic algorithms</title><title>Solar energy</title><description>A methodology for optimal sizing of stand-alone PV/WG systems is presented. The purpose of the proposed methodology is to suggest, among a list of commercially available system devices, the optimal number and type of units ensuring that the 20-year round total system cost is minimized subject to the constraint that the load energy requirements are completely covered, resulting in zero load rejection. The 20-year round total system cost is equal to the sum of the respective components capital and maintenance costs. The cost (objective) function minimization is implemented using genetic algorithms, which, compared to conventional optimization methods such as dynamic programming and gradient techniques, have the ability to attain the global optimum with relative computational simplicity. The proposed method has been applied for the design of a power generation system which supplies a residential household. The simulation results verify that hybrid PV/WG systems feature lower system cost compared to the cases where either exclusively WG or exclusively PV sources are used.</description><subject>Applied sciences</subject><subject>Energy</subject><subject>Equipments, installations and applications</subject><subject>Exact sciences and technology</subject><subject>Generators</subject><subject>Genetic algorithms</subject><subject>Natural energy</subject><subject>Photovoltaic cells</subject><subject>Photovoltaic conversion</subject><subject>Photovoltaic power systems</subject><subject>Solar energy</subject><subject>Wind energy</subject><subject>Wind power</subject><subject>Wind power generation</subject><issn>0038-092X</issn><issn>1471-1257</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNqFkUFr3DAQhU1podu0P6FgCu3NjkZeW_KplJA0gZReEuhNyPJoV0ZrbTXalM2vr8wuFHrJaWD43hvmvaL4CKwGBt3lVFPwOGOsOWNtDVAzxl8VK1gLqIC34nWxYqyRFev5r7fFO6KJMRAgxaqYfmDahjH4sDmWNsQy7JPbaV-Se3bzpgy2pKTnsdI-zFjutyGFp-CTdubyj8v7zXJYp6ykIyXcUXmgRbjskzOl9psQXdru6H3xxmpP-OE8L4rHm-uHq9vq_uf3u6tv95VZc5mqztrOiHHoW9tpIeSAwoiWD0Z2veQM-8HmDUpEw_IcB2SN5jj0tu2FtNhcFF9OvvsYfh-Qkto5Mui9njEcSEHfilbI_mVwLRkAyAx--g-cwiHO-QnFmyXIhrMMtSfIxEAU0ap9zEnGowKmlp7UpM49qaUnBaByT1n3-WyuyWhvo56No39iyaTsYOG-njjM2T257ELG4ZwTcBFNUmNwL1z6C_rRryE</recordid><startdate>20060101</startdate><enddate>20060101</enddate><creator>Koutroulis, Eftichios</creator><creator>Kolokotsa, Dionissia</creator><creator>Potirakis, Antonis</creator><creator>Kalaitzakis, Kostas</creator><general>Elsevier Ltd</general><general>Elsevier</general><general>Pergamon Press Inc</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7ST</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope><scope>SOI</scope><scope>7U6</scope></search><sort><creationdate>20060101</creationdate><title>Methodology for optimal sizing of stand-alone photovoltaic/wind-generator systems using genetic algorithms</title><author>Koutroulis, Eftichios ; Kolokotsa, Dionissia ; Potirakis, Antonis ; Kalaitzakis, Kostas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c428t-6ff6c7db95f6a778be7c752bc869820e9bfe7ce8eec07cedbe03a2eb9f5978fe3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Applied sciences</topic><topic>Energy</topic><topic>Equipments, installations and applications</topic><topic>Exact sciences and technology</topic><topic>Generators</topic><topic>Genetic algorithms</topic><topic>Natural energy</topic><topic>Photovoltaic cells</topic><topic>Photovoltaic conversion</topic><topic>Photovoltaic power systems</topic><topic>Solar energy</topic><topic>Wind energy</topic><topic>Wind power</topic><topic>Wind power generation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Koutroulis, Eftichios</creatorcontrib><creatorcontrib>Kolokotsa, Dionissia</creatorcontrib><creatorcontrib>Potirakis, Antonis</creatorcontrib><creatorcontrib>Kalaitzakis, Kostas</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Environment Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><collection>Sustainability Science Abstracts</collection><jtitle>Solar energy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Koutroulis, Eftichios</au><au>Kolokotsa, Dionissia</au><au>Potirakis, Antonis</au><au>Kalaitzakis, Kostas</au><au>Patel, M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Methodology for optimal sizing of stand-alone photovoltaic/wind-generator systems using genetic algorithms</atitle><jtitle>Solar energy</jtitle><date>2006-01-01</date><risdate>2006</risdate><volume>80</volume><issue>9</issue><spage>1072</spage><epage>1088</epage><pages>1072-1088</pages><issn>0038-092X</issn><eissn>1471-1257</eissn><coden>SRENA4</coden><abstract>A methodology for optimal sizing of stand-alone PV/WG systems is presented. The purpose of the proposed methodology is to suggest, among a list of commercially available system devices, the optimal number and type of units ensuring that the 20-year round total system cost is minimized subject to the constraint that the load energy requirements are completely covered, resulting in zero load rejection. The 20-year round total system cost is equal to the sum of the respective components capital and maintenance costs. The cost (objective) function minimization is implemented using genetic algorithms, which, compared to conventional optimization methods such as dynamic programming and gradient techniques, have the ability to attain the global optimum with relative computational simplicity. The proposed method has been applied for the design of a power generation system which supplies a residential household. The simulation results verify that hybrid PV/WG systems feature lower system cost compared to the cases where either exclusively WG or exclusively PV sources are used.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.solener.2005.11.002</doi><tpages>17</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0038-092X
ispartof Solar energy, 2006-01, Vol.80 (9), p.1072-1088
issn 0038-092X
1471-1257
language eng
recordid cdi_proquest_miscellaneous_19575789
source ScienceDirect Freedom Collection
subjects Applied sciences
Energy
Equipments, installations and applications
Exact sciences and technology
Generators
Genetic algorithms
Natural energy
Photovoltaic cells
Photovoltaic conversion
Photovoltaic power systems
Solar energy
Wind energy
Wind power
Wind power generation
title Methodology for optimal sizing of stand-alone photovoltaic/wind-generator systems using genetic algorithms
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T22%3A05%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Methodology%20for%20optimal%20sizing%20of%20stand-alone%20photovoltaic/wind-generator%20systems%20using%20genetic%20algorithms&rft.jtitle=Solar%20energy&rft.au=Koutroulis,%20Eftichios&rft.date=2006-01-01&rft.volume=80&rft.issue=9&rft.spage=1072&rft.epage=1088&rft.pages=1072-1088&rft.issn=0038-092X&rft.eissn=1471-1257&rft.coden=SRENA4&rft_id=info:doi/10.1016/j.solener.2005.11.002&rft_dat=%3Cproquest_cross%3E14801118%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c428t-6ff6c7db95f6a778be7c752bc869820e9bfe7ce8eec07cedbe03a2eb9f5978fe3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=231718320&rft_id=info:pmid/&rfr_iscdi=true