Loading…
Methodology for optimal sizing of stand-alone photovoltaic/wind-generator systems using genetic algorithms
A methodology for optimal sizing of stand-alone PV/WG systems is presented. The purpose of the proposed methodology is to suggest, among a list of commercially available system devices, the optimal number and type of units ensuring that the 20-year round total system cost is minimized subject to the...
Saved in:
Published in: | Solar energy 2006-01, Vol.80 (9), p.1072-1088 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c428t-6ff6c7db95f6a778be7c752bc869820e9bfe7ce8eec07cedbe03a2eb9f5978fe3 |
---|---|
cites | cdi_FETCH-LOGICAL-c428t-6ff6c7db95f6a778be7c752bc869820e9bfe7ce8eec07cedbe03a2eb9f5978fe3 |
container_end_page | 1088 |
container_issue | 9 |
container_start_page | 1072 |
container_title | Solar energy |
container_volume | 80 |
creator | Koutroulis, Eftichios Kolokotsa, Dionissia Potirakis, Antonis Kalaitzakis, Kostas |
description | A methodology for optimal sizing of stand-alone PV/WG systems is presented. The purpose of the proposed methodology is to suggest, among a list of commercially available system devices, the optimal number and type of units ensuring that the 20-year round total system cost is minimized subject to the constraint that the load energy requirements are completely covered, resulting in zero load rejection. The 20-year round total system cost is equal to the sum of the respective components capital and maintenance costs. The cost (objective) function minimization is implemented using genetic algorithms, which, compared to conventional optimization methods such as dynamic programming and gradient techniques, have the ability to attain the global optimum with relative computational simplicity. The proposed method has been applied for the design of a power generation system which supplies a residential household. The simulation results verify that hybrid PV/WG systems feature lower system cost compared to the cases where either exclusively WG or exclusively PV sources are used. |
doi_str_mv | 10.1016/j.solener.2005.11.002 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_19575789</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0038092X05003713</els_id><sourcerecordid>14801118</sourcerecordid><originalsourceid>FETCH-LOGICAL-c428t-6ff6c7db95f6a778be7c752bc869820e9bfe7ce8eec07cedbe03a2eb9f5978fe3</originalsourceid><addsrcrecordid>eNqFkUFr3DAQhU1podu0P6FgCu3NjkZeW_KplJA0gZReEuhNyPJoV0ZrbTXalM2vr8wuFHrJaWD43hvmvaL4CKwGBt3lVFPwOGOsOWNtDVAzxl8VK1gLqIC34nWxYqyRFev5r7fFO6KJMRAgxaqYfmDahjH4sDmWNsQy7JPbaV-Se3bzpgy2pKTnsdI-zFjutyGFp-CTdubyj8v7zXJYp6ykIyXcUXmgRbjskzOl9psQXdru6H3xxmpP-OE8L4rHm-uHq9vq_uf3u6tv95VZc5mqztrOiHHoW9tpIeSAwoiWD0Z2veQM-8HmDUpEw_IcB2SN5jj0tu2FtNhcFF9OvvsYfh-Qkto5Mui9njEcSEHfilbI_mVwLRkAyAx--g-cwiHO-QnFmyXIhrMMtSfIxEAU0ap9zEnGowKmlp7UpM49qaUnBaByT1n3-WyuyWhvo56No39iyaTsYOG-njjM2T257ELG4ZwTcBFNUmNwL1z6C_rRryE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>231718320</pqid></control><display><type>article</type><title>Methodology for optimal sizing of stand-alone photovoltaic/wind-generator systems using genetic algorithms</title><source>ScienceDirect Freedom Collection</source><creator>Koutroulis, Eftichios ; Kolokotsa, Dionissia ; Potirakis, Antonis ; Kalaitzakis, Kostas</creator><contributor>Patel, M</contributor><creatorcontrib>Koutroulis, Eftichios ; Kolokotsa, Dionissia ; Potirakis, Antonis ; Kalaitzakis, Kostas ; Patel, M</creatorcontrib><description>A methodology for optimal sizing of stand-alone PV/WG systems is presented. The purpose of the proposed methodology is to suggest, among a list of commercially available system devices, the optimal number and type of units ensuring that the 20-year round total system cost is minimized subject to the constraint that the load energy requirements are completely covered, resulting in zero load rejection. The 20-year round total system cost is equal to the sum of the respective components capital and maintenance costs. The cost (objective) function minimization is implemented using genetic algorithms, which, compared to conventional optimization methods such as dynamic programming and gradient techniques, have the ability to attain the global optimum with relative computational simplicity. The proposed method has been applied for the design of a power generation system which supplies a residential household. The simulation results verify that hybrid PV/WG systems feature lower system cost compared to the cases where either exclusively WG or exclusively PV sources are used.</description><identifier>ISSN: 0038-092X</identifier><identifier>EISSN: 1471-1257</identifier><identifier>DOI: 10.1016/j.solener.2005.11.002</identifier><identifier>CODEN: SRENA4</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Applied sciences ; Energy ; Equipments, installations and applications ; Exact sciences and technology ; Generators ; Genetic algorithms ; Natural energy ; Photovoltaic cells ; Photovoltaic conversion ; Photovoltaic power systems ; Solar energy ; Wind energy ; Wind power ; Wind power generation</subject><ispartof>Solar energy, 2006-01, Vol.80 (9), p.1072-1088</ispartof><rights>2005 Elsevier Ltd</rights><rights>2006 INIST-CNRS</rights><rights>Copyright Pergamon Press Inc. Sep 2006</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c428t-6ff6c7db95f6a778be7c752bc869820e9bfe7ce8eec07cedbe03a2eb9f5978fe3</citedby><cites>FETCH-LOGICAL-c428t-6ff6c7db95f6a778be7c752bc869820e9bfe7ce8eec07cedbe03a2eb9f5978fe3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=18088612$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><contributor>Patel, M</contributor><creatorcontrib>Koutroulis, Eftichios</creatorcontrib><creatorcontrib>Kolokotsa, Dionissia</creatorcontrib><creatorcontrib>Potirakis, Antonis</creatorcontrib><creatorcontrib>Kalaitzakis, Kostas</creatorcontrib><title>Methodology for optimal sizing of stand-alone photovoltaic/wind-generator systems using genetic algorithms</title><title>Solar energy</title><description>A methodology for optimal sizing of stand-alone PV/WG systems is presented. The purpose of the proposed methodology is to suggest, among a list of commercially available system devices, the optimal number and type of units ensuring that the 20-year round total system cost is minimized subject to the constraint that the load energy requirements are completely covered, resulting in zero load rejection. The 20-year round total system cost is equal to the sum of the respective components capital and maintenance costs. The cost (objective) function minimization is implemented using genetic algorithms, which, compared to conventional optimization methods such as dynamic programming and gradient techniques, have the ability to attain the global optimum with relative computational simplicity. The proposed method has been applied for the design of a power generation system which supplies a residential household. The simulation results verify that hybrid PV/WG systems feature lower system cost compared to the cases where either exclusively WG or exclusively PV sources are used.</description><subject>Applied sciences</subject><subject>Energy</subject><subject>Equipments, installations and applications</subject><subject>Exact sciences and technology</subject><subject>Generators</subject><subject>Genetic algorithms</subject><subject>Natural energy</subject><subject>Photovoltaic cells</subject><subject>Photovoltaic conversion</subject><subject>Photovoltaic power systems</subject><subject>Solar energy</subject><subject>Wind energy</subject><subject>Wind power</subject><subject>Wind power generation</subject><issn>0038-092X</issn><issn>1471-1257</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNqFkUFr3DAQhU1podu0P6FgCu3NjkZeW_KplJA0gZReEuhNyPJoV0ZrbTXalM2vr8wuFHrJaWD43hvmvaL4CKwGBt3lVFPwOGOsOWNtDVAzxl8VK1gLqIC34nWxYqyRFev5r7fFO6KJMRAgxaqYfmDahjH4sDmWNsQy7JPbaV-Se3bzpgy2pKTnsdI-zFjutyGFp-CTdubyj8v7zXJYp6ykIyXcUXmgRbjskzOl9psQXdru6H3xxmpP-OE8L4rHm-uHq9vq_uf3u6tv95VZc5mqztrOiHHoW9tpIeSAwoiWD0Z2veQM-8HmDUpEw_IcB2SN5jj0tu2FtNhcFF9OvvsYfh-Qkto5Mui9njEcSEHfilbI_mVwLRkAyAx--g-cwiHO-QnFmyXIhrMMtSfIxEAU0ap9zEnGowKmlp7UpM49qaUnBaByT1n3-WyuyWhvo56No39iyaTsYOG-njjM2T257ELG4ZwTcBFNUmNwL1z6C_rRryE</recordid><startdate>20060101</startdate><enddate>20060101</enddate><creator>Koutroulis, Eftichios</creator><creator>Kolokotsa, Dionissia</creator><creator>Potirakis, Antonis</creator><creator>Kalaitzakis, Kostas</creator><general>Elsevier Ltd</general><general>Elsevier</general><general>Pergamon Press Inc</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7ST</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope><scope>SOI</scope><scope>7U6</scope></search><sort><creationdate>20060101</creationdate><title>Methodology for optimal sizing of stand-alone photovoltaic/wind-generator systems using genetic algorithms</title><author>Koutroulis, Eftichios ; Kolokotsa, Dionissia ; Potirakis, Antonis ; Kalaitzakis, Kostas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c428t-6ff6c7db95f6a778be7c752bc869820e9bfe7ce8eec07cedbe03a2eb9f5978fe3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Applied sciences</topic><topic>Energy</topic><topic>Equipments, installations and applications</topic><topic>Exact sciences and technology</topic><topic>Generators</topic><topic>Genetic algorithms</topic><topic>Natural energy</topic><topic>Photovoltaic cells</topic><topic>Photovoltaic conversion</topic><topic>Photovoltaic power systems</topic><topic>Solar energy</topic><topic>Wind energy</topic><topic>Wind power</topic><topic>Wind power generation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Koutroulis, Eftichios</creatorcontrib><creatorcontrib>Kolokotsa, Dionissia</creatorcontrib><creatorcontrib>Potirakis, Antonis</creatorcontrib><creatorcontrib>Kalaitzakis, Kostas</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Environment Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><collection>Sustainability Science Abstracts</collection><jtitle>Solar energy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Koutroulis, Eftichios</au><au>Kolokotsa, Dionissia</au><au>Potirakis, Antonis</au><au>Kalaitzakis, Kostas</au><au>Patel, M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Methodology for optimal sizing of stand-alone photovoltaic/wind-generator systems using genetic algorithms</atitle><jtitle>Solar energy</jtitle><date>2006-01-01</date><risdate>2006</risdate><volume>80</volume><issue>9</issue><spage>1072</spage><epage>1088</epage><pages>1072-1088</pages><issn>0038-092X</issn><eissn>1471-1257</eissn><coden>SRENA4</coden><abstract>A methodology for optimal sizing of stand-alone PV/WG systems is presented. The purpose of the proposed methodology is to suggest, among a list of commercially available system devices, the optimal number and type of units ensuring that the 20-year round total system cost is minimized subject to the constraint that the load energy requirements are completely covered, resulting in zero load rejection. The 20-year round total system cost is equal to the sum of the respective components capital and maintenance costs. The cost (objective) function minimization is implemented using genetic algorithms, which, compared to conventional optimization methods such as dynamic programming and gradient techniques, have the ability to attain the global optimum with relative computational simplicity. The proposed method has been applied for the design of a power generation system which supplies a residential household. The simulation results verify that hybrid PV/WG systems feature lower system cost compared to the cases where either exclusively WG or exclusively PV sources are used.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.solener.2005.11.002</doi><tpages>17</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0038-092X |
ispartof | Solar energy, 2006-01, Vol.80 (9), p.1072-1088 |
issn | 0038-092X 1471-1257 |
language | eng |
recordid | cdi_proquest_miscellaneous_19575789 |
source | ScienceDirect Freedom Collection |
subjects | Applied sciences Energy Equipments, installations and applications Exact sciences and technology Generators Genetic algorithms Natural energy Photovoltaic cells Photovoltaic conversion Photovoltaic power systems Solar energy Wind energy Wind power Wind power generation |
title | Methodology for optimal sizing of stand-alone photovoltaic/wind-generator systems using genetic algorithms |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T22%3A05%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Methodology%20for%20optimal%20sizing%20of%20stand-alone%20photovoltaic/wind-generator%20systems%20using%20genetic%20algorithms&rft.jtitle=Solar%20energy&rft.au=Koutroulis,%20Eftichios&rft.date=2006-01-01&rft.volume=80&rft.issue=9&rft.spage=1072&rft.epage=1088&rft.pages=1072-1088&rft.issn=0038-092X&rft.eissn=1471-1257&rft.coden=SRENA4&rft_id=info:doi/10.1016/j.solener.2005.11.002&rft_dat=%3Cproquest_cross%3E14801118%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c428t-6ff6c7db95f6a778be7c752bc869820e9bfe7ce8eec07cedbe03a2eb9f5978fe3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=231718320&rft_id=info:pmid/&rfr_iscdi=true |