Loading…

Collision Induced Dissociation of Benzylpyridinium-Substituted Porphyrins: Towards a Thermometer Scale for Multiply Charged Ions?

We have determined breakdown curves for a range of multiply charged benzylpyridinium-substituted porphyrin cations by collision induced dissociation measurements (CID) as mediated by resonant pulsed radio-frequency (rf) excitation in a helium-filled linear ion trap. Measurements were compared with t...

Full description

Saved in:
Bibliographic Details
Published in:Journal of the American Society for Mass Spectrometry 2018-02, Vol.29 (2), p.382-392
Main Authors: Brendle, Katrina, Kordel, Max, Schneider, Erik, Wagner, Danny, Bräse, Stefan, Weis, Patrick, Kappes, Manfred M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We have determined breakdown curves for a range of multiply charged benzylpyridinium-substituted porphyrin cations by collision induced dissociation measurements (CID) as mediated by resonant pulsed radio-frequency (rf) excitation in a helium-filled linear ion trap. Measurements were compared with the predictions of DFT calculations. We find a linear correlation between experimental fragmentation thresholds (in instrumental units of “normalized collision energy”) and theoretical dissociation energies, suggesting that these species can be used as calibrants to gauge the fragmentation energetics of closely related systems. We have confirmed this by also studying the fragmentation thresholds of metalloporphyrin-based ions – including multiply negatively charged metalloporphyrin oligomers. Unfortunately, the slope of the linear correlation obtained for benzylpyridinium-substituted porphyrin multications differs significantly from that obtained by us for a set of smaller, singly charged substituted benzylpyridines put forward as “thermometer” ions in previous work. Multiplying the threshold energies in an ad hoc fashion by the ion charge basically reconciles both calibration curves. We conclude that one should use caution when applying small, singly charged benzylpyridines as calibrants to gauge the CID of large, multiply charged ions in ion-trap mass spectrometers. Graphical Abstract
ISSN:1044-0305
1879-1123
DOI:10.1007/s13361-017-1835-4