Loading…

Biomonitoring for metal contamination near two Superfund sites in Woburn, Massachusetts, using phytochelatins

Characterizing the spatial extent of groundwater metal contamination traditionally requires installing sampling wells, an expensive and time-consuming process in urban areas. Moreover, extrapolating biotic effects from metal concentrations alone is problematic, making ecological risk assessment diff...

Full description

Saved in:
Bibliographic Details
Published in:Environmental pollution (1987) 2004-09, Vol.131 (1), p.125-135
Main Authors: Gawel, James E, Hemond, Harold F
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Characterizing the spatial extent of groundwater metal contamination traditionally requires installing sampling wells, an expensive and time-consuming process in urban areas. Moreover, extrapolating biotic effects from metal concentrations alone is problematic, making ecological risk assessment difficult. Our study is the first to examine the use of phytochelatin measurements in tree leaves for delimiting biological metal stress in shallow, metal-contaminated groundwater systems. Three tree species ( Rhamnus frangula, Acer platanoides, and Betula populifolia) growing above the shallow groundwater aquifer of the Aberjona River watershed in Woburn, Massachusetts, display a pattern of phytochelatin production consistent with known sources of metal contamination and groundwater flow direction near the Industri-Plex Superfund site. Results also suggest the existence of a second area of contaminated groundwater and elevated metal stress near the Wells G&H Superfund site downstream, in agreement with a recent EPA ecological risk assessment. Possible contamination pathways at this site are discussed.
ISSN:0269-7491
1873-6424
DOI:10.1016/j.envpol.2004.01.012