Loading…

TNT Detection Using Multiplexed Liquid Array Displacement Immunoassays

The presence of trace contamination of soil and groundwater with explosives is an ongoing concern, for which improved methods are required to facilitate their detection and quantification. This is true both for the monitoring of remediation and for site characterization. Immunosensors have been foun...

Full description

Saved in:
Bibliographic Details
Published in:Analytical chemistry (Washington) 2006-04, Vol.78 (7), p.2279-2285
Main Authors: Anderson, George P, Moreira, Solimar C, Charles, Paul T, Medintz, Igor L, Goldman, Ellen R, Zeinali, Mazyar, Taitt, Chris R
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The presence of trace contamination of soil and groundwater with explosives is an ongoing concern, for which improved methods are required to facilitate their detection and quantification. This is true both for the monitoring of remediation and for site characterization. Immunosensors have been found effective for solution-phase detection of environmental contaminants. Our work utilized the Luminex100 (flow cytometer) to detect TNT in a multiplexed displacement immunoassay format. The Luminex100 can perform a multiplexed assay by discriminating between up to 100 different bead sets. We used this capability to evaluate four different TNT monoclonal antibodies, two recombinant TNT antibodies, and a control antibody simultaneously for the rapid detection of TNT and other nitroaromatics. TNT could be detected at 0.1 ppb and quantified over the range of 1.0 ppb to 10 ppm. In addition, the assay was shown to be effective in various matrixes such as lake water, seawater, and acetone extracts of soil. Seawater required dilution with two parts buffer to avoid loss of microspheres, while the acetone extracts were diluted 100-fold or more to minimize solvent affects.
ISSN:0003-2700
1520-6882
DOI:10.1021/ac051995c