Loading…

A study of software reliability growth from the perspective of learning effects

For the last three decades, reliability growth has been studied to predict software reliability in the testing/debugging phase. Most of the models developed were based on the non-homogeneous Poisson process (NHPP), and S-shaped type or exponential-shaped type of behavior is usually assumed. Unfortun...

Full description

Saved in:
Bibliographic Details
Published in:Reliability engineering & system safety 2008-10, Vol.93 (10), p.1410-1421
Main Authors: Chiu, Kuei-Chen, Huang, Yeu-Shiang, Lee, Tzai-Zang
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:For the last three decades, reliability growth has been studied to predict software reliability in the testing/debugging phase. Most of the models developed were based on the non-homogeneous Poisson process (NHPP), and S-shaped type or exponential-shaped type of behavior is usually assumed. Unfortunately, such models may be suitable only for particular software failure data, thus narrowing the scope of applications. Therefore, from the perspective of learning effects that can influence the process of software reliability growth, we considered that efficiency in testing/debugging concerned not only the ability of the testing staff but also the learning effect that comes from inspecting the testing/debugging codes. The proposed approach can reasonably describe the S-shaped and exponential-shaped types of behaviors simultaneously, and the results in the experiment show good fit. A comparative analysis to evaluate the effectiveness for the proposed model and other software failure models was also performed. Finally, an optimal software release policy is suggested.
ISSN:0951-8320
1879-0836
DOI:10.1016/j.ress.2007.11.004