Loading…

Dimethyl Fumarate Modulates Oxidative Stress and Inflammation in Organs After Sepsis in Rats

Sepsis is defined as life-threatening organ dysfunction induced by a disrupted host response to infecting pathogens. Evidences suggest that oxidative stress is intrinsically related to sepsis progression. Dimethyl fumarate (DMF) is a novel oral therapeutic agent with anti-oxidant properties which ex...

Full description

Saved in:
Bibliographic Details
Published in:Inflammation 2018-02, Vol.41 (1), p.315-327
Main Authors: Giustina, Amanda Della, Bonfante, Sandra, Zarbato, Graciela Freitas, Danielski, Lucinéia Gainski, Mathias, Khiany, de Oliveira, Aloir Neri, Garbossa, Leandro, Cardoso, Taise, Fileti, Maria Eduarda, De Carli, Raquel Jaconi, Goldim, Mariana Pereira, Barichello, Tatiana, Petronilho, Fabricia
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Sepsis is defined as life-threatening organ dysfunction induced by a disrupted host response to infecting pathogens. Evidences suggest that oxidative stress is intrinsically related to sepsis progression. Dimethyl fumarate (DMF) is a novel oral therapeutic agent with anti-oxidant properties which exerts protective effects through activation of nuclear factor erythroid 2 (NFE2)-related factor 2 (Nrf2). Thus, the aim of this study is to evaluate the effect of DMF in different organs of rats submitted to an animal model of sepsis. Adult male Wistar rats were subjected to sepsis by cecal ligation and puncture (CLP) procedure and sham-operated rats was considered control group. The experimental groups were divided into sham + vehicle, sham + DMF, sham + NAC, CLP + vehicle, CLP + DMF, and CLP + NAC. Rats were treated by oral gavage with DMF immediately after and 12 h after surgery, or NAC (s.c.) at 3, 6, and 12 h after surgery. Twenty-four hours after sepsis induction, neutrophil infiltration, nitrite/nitrate concentrations, oxidative damage to lipids and proteins, superoxide dismutase (SOD), and catalase (CAT) activities were evaluated in the heart, liver, lung, and kidney. Septic animals presented increased neutrophil infiltration, NO metabolism, oxidative damage to lipids and proteins, and decreases of SOD and CAT activities, mainly in the heart, liver, and lung, while DMF-treated animals showed significant reduction in neutrophil infiltration, NO metabolism, and oxidative damage followed by increased SOD and CAT activities. DMF is effective in preventing oxidative stress and inflammation in rats 24 h after sepsis induction.
ISSN:0360-3997
1573-2576
DOI:10.1007/s10753-017-0689-z