Loading…
A point kernel model for the energy deposited on samples from gamma radiation in a research reactor core
A basic safety requirement for a research reactor is the reliable estimation of the gamma heating of samples irradiated in the reactor core. A three-dimensional numerical code of gamma heating using a point kernel parameterization is developed. The heating due to γ-rays, produced from U235 fission a...
Saved in:
Published in: | Annals of nuclear energy 2008-12, Vol.35 (12), p.2351-2356 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A basic safety requirement for a research reactor is the reliable estimation of the gamma heating of samples irradiated in the reactor core. A three-dimensional numerical code of gamma heating using a point kernel parameterization is developed. The heating due to γ-rays, produced from U235 fission and from (n,
γ) reactions with the core materials is considered. The dose build-up due to photons scattering on the core materials as well as the energy absorption build-up in the sample are also included, based on empirical relationships. The developed code (GHRRC: Gamma Heating in Research Reactor Cores) is applied for the Greek Research Reactor (GRR-1) core. The required microscopic cross-sections and the three-dimensional neutron flux are obtained with the neutronics code system XSDRNPM and CITATION. The macroscopic cross-sections of the U235 fission and the (n,
γ) reactions in the core materials are determined assuming a homogenized core. Comparisons of the computed gamma heating power deposited on a Fe sample with in-pile and out of pile measurements of the sample temperature show that GHRRC gives reasonable estimations. GHRRC may easily be handled even by poorly experienced users. |
---|---|
ISSN: | 0306-4549 1873-2100 |
DOI: | 10.1016/j.anucene.2008.07.008 |