Loading…

Size optimization of a PV/wind hybrid energy conversion system with battery storage using response surface methodology

This paper aims to show the use of the response surface methodology (RSM) in size optimization of an autonomous PV/wind integrated hybrid energy system with battery storage. RSM is a collection of statistical and mathematical methods which relies on optimization of response surface with design param...

Full description

Saved in:
Bibliographic Details
Published in:Applied energy 2008-11, Vol.85 (11), p.1086-1101
Main Authors: Ekren, Orhan, Ekren, Banu Yetkin
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c474t-2b1d0d16ff95caa7ca33491a4069c6f24ab25163c71c98f02df1bba8df230cf23
cites cdi_FETCH-LOGICAL-c474t-2b1d0d16ff95caa7ca33491a4069c6f24ab25163c71c98f02df1bba8df230cf23
container_end_page 1101
container_issue 11
container_start_page 1086
container_title Applied energy
container_volume 85
creator Ekren, Orhan
Ekren, Banu Yetkin
description This paper aims to show the use of the response surface methodology (RSM) in size optimization of an autonomous PV/wind integrated hybrid energy system with battery storage. RSM is a collection of statistical and mathematical methods which relies on optimization of response surface with design parameters. In this study, the response surface, output performance measure, is the hybrid system cost, and the design parameters are the PV size, wind turbine rotor swept area and the battery capacity. The case study is realized in ARENA 10.0, a commercial simulation software, for satisfaction of electricity consumption of the global system for mobile communications (GSM) base station at Izmir Institute of Technology Campus Area, Urla, Turkey. As a result, the optimum PV area, wind turbine rotor swept area, and battery capacity are obtained to be 3.95 m 2, 29.4 m 2, 31.92 kWh, respectively. These results led to $37,033.9 hybrid energy system cost, including auxiliary energy cost. The optimum result obtained by RSM is confirmed using loss of load probability (LLP) and autonomy analysis.
doi_str_mv 10.1016/j.apenergy.2008.02.016
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_19635494</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0306261908000524</els_id><sourcerecordid>8812080</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-2b1d0d16ff95caa7ca33491a4069c6f24ab25163c71c98f02df1bba8df230cf23</originalsourceid><addsrcrecordid>eNqFkU9v1DAQxSMEEkvhKyBf4JbUdhInvoEqCkhFIPHnak2c8a5XSRxs71bpp8dpSq89zLM1-r3nkSfL3jJaMMrE5bGAGSf0-6XglLYF5UVqP8t2rG14Lhlrn2c7WlKRc8Hky-xVCEdKKWec7rLzT3uHxM3RjvYOonUTcYYA-fHn8tZOPTksnbc92fKJdtMZfVipsISII7m18UA6iBH9QkJ0HvZITsFOe-IxzG4KSMLJG9BIRowH17vB7ZfX2QsDQ8A3D-dF9vv606-rL_nN989frz7e5LpqqpjzjvW0Z8IYWWuARkNZVpJBRYXUwvAKOl4zUeqGadkaynvDug7a3vCS6iQX2fstd_bu7wlDVKMNGocBJnSnoJgUZV3J6mmwautW3oNiA7V3IXg0avZ2BL8oRtW6D3VU__eh1n0oylVqJ-O3zehxRv3oQkSYV16dVQltnWRJde8swaZiLMm8XmgrFEtvqEMcU967h4khaBiMh0nb8JjLaSV53ZSJ-7BxmP75bNGroC1OGnvrUUfVO_vU6P8A8KzBUg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>14858994</pqid></control><display><type>article</type><title>Size optimization of a PV/wind hybrid energy conversion system with battery storage using response surface methodology</title><source>ScienceDirect Freedom Collection</source><creator>Ekren, Orhan ; Ekren, Banu Yetkin</creator><creatorcontrib>Ekren, Orhan ; Ekren, Banu Yetkin</creatorcontrib><description>This paper aims to show the use of the response surface methodology (RSM) in size optimization of an autonomous PV/wind integrated hybrid energy system with battery storage. RSM is a collection of statistical and mathematical methods which relies on optimization of response surface with design parameters. In this study, the response surface, output performance measure, is the hybrid system cost, and the design parameters are the PV size, wind turbine rotor swept area and the battery capacity. The case study is realized in ARENA 10.0, a commercial simulation software, for satisfaction of electricity consumption of the global system for mobile communications (GSM) base station at Izmir Institute of Technology Campus Area, Urla, Turkey. As a result, the optimum PV area, wind turbine rotor swept area, and battery capacity are obtained to be 3.95 m 2, 29.4 m 2, 31.92 kWh, respectively. These results led to $37,033.9 hybrid energy system cost, including auxiliary energy cost. The optimum result obtained by RSM is confirmed using loss of load probability (LLP) and autonomy analysis.</description><identifier>ISSN: 0306-2619</identifier><identifier>EISSN: 1872-9118</identifier><identifier>DOI: 10.1016/j.apenergy.2008.02.016</identifier><identifier>CODEN: APENDX</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Applied sciences ; Batteries ; case studies ; Communications ; Computer programs ; Direct energy conversion and energy accumulation ; Electrical engineering. Electrical power engineering ; Electrical power engineering ; Electrochemical conversion: primary and secondary batteries, fuel cells ; Energy ; Equipments, installations and applications ; Exact sciences and technology ; Hybrid energy ; Hybrid energy Optimization Simulation Response surface methodology ; hybrids ; Natural energy ; Optimization ; Q1 ; Q3 ; Response surface methodology ; Simulation ; Solar energy ; Solar thermal conversion ; Storage ; Technology ; Turkey ; Turkey, Anatolia, Izmir ; Wind energy</subject><ispartof>Applied energy, 2008-11, Vol.85 (11), p.1086-1101</ispartof><rights>2008 Elsevier Ltd</rights><rights>2008 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-2b1d0d16ff95caa7ca33491a4069c6f24ab25163c71c98f02df1bba8df230cf23</citedby><cites>FETCH-LOGICAL-c474t-2b1d0d16ff95caa7ca33491a4069c6f24ab25163c71c98f02df1bba8df230cf23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=20492573$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttp://econpapers.repec.org/article/eeeappene/v_3a85_3ay_3a2008_3ai_3a11_3ap_3a1086-1101.htm$$DView record in RePEc$$Hfree_for_read</backlink></links><search><creatorcontrib>Ekren, Orhan</creatorcontrib><creatorcontrib>Ekren, Banu Yetkin</creatorcontrib><title>Size optimization of a PV/wind hybrid energy conversion system with battery storage using response surface methodology</title><title>Applied energy</title><description>This paper aims to show the use of the response surface methodology (RSM) in size optimization of an autonomous PV/wind integrated hybrid energy system with battery storage. RSM is a collection of statistical and mathematical methods which relies on optimization of response surface with design parameters. In this study, the response surface, output performance measure, is the hybrid system cost, and the design parameters are the PV size, wind turbine rotor swept area and the battery capacity. The case study is realized in ARENA 10.0, a commercial simulation software, for satisfaction of electricity consumption of the global system for mobile communications (GSM) base station at Izmir Institute of Technology Campus Area, Urla, Turkey. As a result, the optimum PV area, wind turbine rotor swept area, and battery capacity are obtained to be 3.95 m 2, 29.4 m 2, 31.92 kWh, respectively. These results led to $37,033.9 hybrid energy system cost, including auxiliary energy cost. The optimum result obtained by RSM is confirmed using loss of load probability (LLP) and autonomy analysis.</description><subject>Applied sciences</subject><subject>Batteries</subject><subject>case studies</subject><subject>Communications</subject><subject>Computer programs</subject><subject>Direct energy conversion and energy accumulation</subject><subject>Electrical engineering. Electrical power engineering</subject><subject>Electrical power engineering</subject><subject>Electrochemical conversion: primary and secondary batteries, fuel cells</subject><subject>Energy</subject><subject>Equipments, installations and applications</subject><subject>Exact sciences and technology</subject><subject>Hybrid energy</subject><subject>Hybrid energy Optimization Simulation Response surface methodology</subject><subject>hybrids</subject><subject>Natural energy</subject><subject>Optimization</subject><subject>Q1</subject><subject>Q3</subject><subject>Response surface methodology</subject><subject>Simulation</subject><subject>Solar energy</subject><subject>Solar thermal conversion</subject><subject>Storage</subject><subject>Technology</subject><subject>Turkey</subject><subject>Turkey, Anatolia, Izmir</subject><subject>Wind energy</subject><issn>0306-2619</issn><issn>1872-9118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNqFkU9v1DAQxSMEEkvhKyBf4JbUdhInvoEqCkhFIPHnak2c8a5XSRxs71bpp8dpSq89zLM1-r3nkSfL3jJaMMrE5bGAGSf0-6XglLYF5UVqP8t2rG14Lhlrn2c7WlKRc8Hky-xVCEdKKWec7rLzT3uHxM3RjvYOonUTcYYA-fHn8tZOPTksnbc92fKJdtMZfVipsISII7m18UA6iBH9QkJ0HvZITsFOe-IxzG4KSMLJG9BIRowH17vB7ZfX2QsDQ8A3D-dF9vv606-rL_nN989frz7e5LpqqpjzjvW0Z8IYWWuARkNZVpJBRYXUwvAKOl4zUeqGadkaynvDug7a3vCS6iQX2fstd_bu7wlDVKMNGocBJnSnoJgUZV3J6mmwautW3oNiA7V3IXg0avZ2BL8oRtW6D3VU__eh1n0oylVqJ-O3zehxRv3oQkSYV16dVQltnWRJde8swaZiLMm8XmgrFEtvqEMcU967h4khaBiMh0nb8JjLaSV53ZSJ-7BxmP75bNGroC1OGnvrUUfVO_vU6P8A8KzBUg</recordid><startdate>20081101</startdate><enddate>20081101</enddate><creator>Ekren, Orhan</creator><creator>Ekren, Banu Yetkin</creator><general>Elsevier Ltd</general><general>Elsevier Science</general><general>Elsevier</general><scope>IQODW</scope><scope>DKI</scope><scope>X2L</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>C1K</scope><scope>SOI</scope></search><sort><creationdate>20081101</creationdate><title>Size optimization of a PV/wind hybrid energy conversion system with battery storage using response surface methodology</title><author>Ekren, Orhan ; Ekren, Banu Yetkin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-2b1d0d16ff95caa7ca33491a4069c6f24ab25163c71c98f02df1bba8df230cf23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Applied sciences</topic><topic>Batteries</topic><topic>case studies</topic><topic>Communications</topic><topic>Computer programs</topic><topic>Direct energy conversion and energy accumulation</topic><topic>Electrical engineering. Electrical power engineering</topic><topic>Electrical power engineering</topic><topic>Electrochemical conversion: primary and secondary batteries, fuel cells</topic><topic>Energy</topic><topic>Equipments, installations and applications</topic><topic>Exact sciences and technology</topic><topic>Hybrid energy</topic><topic>Hybrid energy Optimization Simulation Response surface methodology</topic><topic>hybrids</topic><topic>Natural energy</topic><topic>Optimization</topic><topic>Q1</topic><topic>Q3</topic><topic>Response surface methodology</topic><topic>Simulation</topic><topic>Solar energy</topic><topic>Solar thermal conversion</topic><topic>Storage</topic><topic>Technology</topic><topic>Turkey</topic><topic>Turkey, Anatolia, Izmir</topic><topic>Wind energy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ekren, Orhan</creatorcontrib><creatorcontrib>Ekren, Banu Yetkin</creatorcontrib><collection>Pascal-Francis</collection><collection>RePEc IDEAS</collection><collection>RePEc</collection><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Environment Abstracts</collection><jtitle>Applied energy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ekren, Orhan</au><au>Ekren, Banu Yetkin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Size optimization of a PV/wind hybrid energy conversion system with battery storage using response surface methodology</atitle><jtitle>Applied energy</jtitle><date>2008-11-01</date><risdate>2008</risdate><volume>85</volume><issue>11</issue><spage>1086</spage><epage>1101</epage><pages>1086-1101</pages><issn>0306-2619</issn><eissn>1872-9118</eissn><coden>APENDX</coden><abstract>This paper aims to show the use of the response surface methodology (RSM) in size optimization of an autonomous PV/wind integrated hybrid energy system with battery storage. RSM is a collection of statistical and mathematical methods which relies on optimization of response surface with design parameters. In this study, the response surface, output performance measure, is the hybrid system cost, and the design parameters are the PV size, wind turbine rotor swept area and the battery capacity. The case study is realized in ARENA 10.0, a commercial simulation software, for satisfaction of electricity consumption of the global system for mobile communications (GSM) base station at Izmir Institute of Technology Campus Area, Urla, Turkey. As a result, the optimum PV area, wind turbine rotor swept area, and battery capacity are obtained to be 3.95 m 2, 29.4 m 2, 31.92 kWh, respectively. These results led to $37,033.9 hybrid energy system cost, including auxiliary energy cost. The optimum result obtained by RSM is confirmed using loss of load probability (LLP) and autonomy analysis.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.apenergy.2008.02.016</doi><tpages>16</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0306-2619
ispartof Applied energy, 2008-11, Vol.85 (11), p.1086-1101
issn 0306-2619
1872-9118
language eng
recordid cdi_proquest_miscellaneous_19635494
source ScienceDirect Freedom Collection
subjects Applied sciences
Batteries
case studies
Communications
Computer programs
Direct energy conversion and energy accumulation
Electrical engineering. Electrical power engineering
Electrical power engineering
Electrochemical conversion: primary and secondary batteries, fuel cells
Energy
Equipments, installations and applications
Exact sciences and technology
Hybrid energy
Hybrid energy Optimization Simulation Response surface methodology
hybrids
Natural energy
Optimization
Q1
Q3
Response surface methodology
Simulation
Solar energy
Solar thermal conversion
Storage
Technology
Turkey
Turkey, Anatolia, Izmir
Wind energy
title Size optimization of a PV/wind hybrid energy conversion system with battery storage using response surface methodology
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T10%3A51%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Size%20optimization%20of%20a%20PV/wind%20hybrid%20energy%20conversion%20system%20with%20battery%20storage%20using%20response%20surface%20methodology&rft.jtitle=Applied%20energy&rft.au=Ekren,%20Orhan&rft.date=2008-11-01&rft.volume=85&rft.issue=11&rft.spage=1086&rft.epage=1101&rft.pages=1086-1101&rft.issn=0306-2619&rft.eissn=1872-9118&rft.coden=APENDX&rft_id=info:doi/10.1016/j.apenergy.2008.02.016&rft_dat=%3Cproquest_cross%3E8812080%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c474t-2b1d0d16ff95caa7ca33491a4069c6f24ab25163c71c98f02df1bba8df230cf23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=14858994&rft_id=info:pmid/&rfr_iscdi=true