Loading…
Size optimization of a PV/wind hybrid energy conversion system with battery storage using response surface methodology
This paper aims to show the use of the response surface methodology (RSM) in size optimization of an autonomous PV/wind integrated hybrid energy system with battery storage. RSM is a collection of statistical and mathematical methods which relies on optimization of response surface with design param...
Saved in:
Published in: | Applied energy 2008-11, Vol.85 (11), p.1086-1101 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c474t-2b1d0d16ff95caa7ca33491a4069c6f24ab25163c71c98f02df1bba8df230cf23 |
---|---|
cites | cdi_FETCH-LOGICAL-c474t-2b1d0d16ff95caa7ca33491a4069c6f24ab25163c71c98f02df1bba8df230cf23 |
container_end_page | 1101 |
container_issue | 11 |
container_start_page | 1086 |
container_title | Applied energy |
container_volume | 85 |
creator | Ekren, Orhan Ekren, Banu Yetkin |
description | This paper aims to show the use of the response surface methodology (RSM) in size optimization of an autonomous PV/wind integrated hybrid energy system with battery storage. RSM is a collection of statistical and mathematical methods which relies on optimization of response surface with design parameters. In this study, the response surface, output performance measure, is the hybrid system cost, and the design parameters are the PV size, wind turbine rotor swept area and the battery capacity. The case study is realized in ARENA 10.0, a commercial simulation software, for satisfaction of electricity consumption of the global system for mobile communications (GSM) base station at Izmir Institute of Technology Campus Area, Urla, Turkey. As a result, the optimum PV area, wind turbine rotor swept area, and battery capacity are obtained to be 3.95
m
2, 29.4
m
2, 31.92
kWh, respectively. These results led to $37,033.9 hybrid energy system cost, including auxiliary energy cost. The optimum result obtained by RSM is confirmed using loss of load probability (LLP) and autonomy analysis. |
doi_str_mv | 10.1016/j.apenergy.2008.02.016 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_19635494</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0306261908000524</els_id><sourcerecordid>8812080</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-2b1d0d16ff95caa7ca33491a4069c6f24ab25163c71c98f02df1bba8df230cf23</originalsourceid><addsrcrecordid>eNqFkU9v1DAQxSMEEkvhKyBf4JbUdhInvoEqCkhFIPHnak2c8a5XSRxs71bpp8dpSq89zLM1-r3nkSfL3jJaMMrE5bGAGSf0-6XglLYF5UVqP8t2rG14Lhlrn2c7WlKRc8Hky-xVCEdKKWec7rLzT3uHxM3RjvYOonUTcYYA-fHn8tZOPTksnbc92fKJdtMZfVipsISII7m18UA6iBH9QkJ0HvZITsFOe-IxzG4KSMLJG9BIRowH17vB7ZfX2QsDQ8A3D-dF9vv606-rL_nN989frz7e5LpqqpjzjvW0Z8IYWWuARkNZVpJBRYXUwvAKOl4zUeqGadkaynvDug7a3vCS6iQX2fstd_bu7wlDVKMNGocBJnSnoJgUZV3J6mmwautW3oNiA7V3IXg0avZ2BL8oRtW6D3VU__eh1n0oylVqJ-O3zehxRv3oQkSYV16dVQltnWRJde8swaZiLMm8XmgrFEtvqEMcU967h4khaBiMh0nb8JjLaSV53ZSJ-7BxmP75bNGroC1OGnvrUUfVO_vU6P8A8KzBUg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>14858994</pqid></control><display><type>article</type><title>Size optimization of a PV/wind hybrid energy conversion system with battery storage using response surface methodology</title><source>ScienceDirect Freedom Collection</source><creator>Ekren, Orhan ; Ekren, Banu Yetkin</creator><creatorcontrib>Ekren, Orhan ; Ekren, Banu Yetkin</creatorcontrib><description>This paper aims to show the use of the response surface methodology (RSM) in size optimization of an autonomous PV/wind integrated hybrid energy system with battery storage. RSM is a collection of statistical and mathematical methods which relies on optimization of response surface with design parameters. In this study, the response surface, output performance measure, is the hybrid system cost, and the design parameters are the PV size, wind turbine rotor swept area and the battery capacity. The case study is realized in ARENA 10.0, a commercial simulation software, for satisfaction of electricity consumption of the global system for mobile communications (GSM) base station at Izmir Institute of Technology Campus Area, Urla, Turkey. As a result, the optimum PV area, wind turbine rotor swept area, and battery capacity are obtained to be 3.95
m
2, 29.4
m
2, 31.92
kWh, respectively. These results led to $37,033.9 hybrid energy system cost, including auxiliary energy cost. The optimum result obtained by RSM is confirmed using loss of load probability (LLP) and autonomy analysis.</description><identifier>ISSN: 0306-2619</identifier><identifier>EISSN: 1872-9118</identifier><identifier>DOI: 10.1016/j.apenergy.2008.02.016</identifier><identifier>CODEN: APENDX</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Applied sciences ; Batteries ; case studies ; Communications ; Computer programs ; Direct energy conversion and energy accumulation ; Electrical engineering. Electrical power engineering ; Electrical power engineering ; Electrochemical conversion: primary and secondary batteries, fuel cells ; Energy ; Equipments, installations and applications ; Exact sciences and technology ; Hybrid energy ; Hybrid energy Optimization Simulation Response surface methodology ; hybrids ; Natural energy ; Optimization ; Q1 ; Q3 ; Response surface methodology ; Simulation ; Solar energy ; Solar thermal conversion ; Storage ; Technology ; Turkey ; Turkey, Anatolia, Izmir ; Wind energy</subject><ispartof>Applied energy, 2008-11, Vol.85 (11), p.1086-1101</ispartof><rights>2008 Elsevier Ltd</rights><rights>2008 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-2b1d0d16ff95caa7ca33491a4069c6f24ab25163c71c98f02df1bba8df230cf23</citedby><cites>FETCH-LOGICAL-c474t-2b1d0d16ff95caa7ca33491a4069c6f24ab25163c71c98f02df1bba8df230cf23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=20492573$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttp://econpapers.repec.org/article/eeeappene/v_3a85_3ay_3a2008_3ai_3a11_3ap_3a1086-1101.htm$$DView record in RePEc$$Hfree_for_read</backlink></links><search><creatorcontrib>Ekren, Orhan</creatorcontrib><creatorcontrib>Ekren, Banu Yetkin</creatorcontrib><title>Size optimization of a PV/wind hybrid energy conversion system with battery storage using response surface methodology</title><title>Applied energy</title><description>This paper aims to show the use of the response surface methodology (RSM) in size optimization of an autonomous PV/wind integrated hybrid energy system with battery storage. RSM is a collection of statistical and mathematical methods which relies on optimization of response surface with design parameters. In this study, the response surface, output performance measure, is the hybrid system cost, and the design parameters are the PV size, wind turbine rotor swept area and the battery capacity. The case study is realized in ARENA 10.0, a commercial simulation software, for satisfaction of electricity consumption of the global system for mobile communications (GSM) base station at Izmir Institute of Technology Campus Area, Urla, Turkey. As a result, the optimum PV area, wind turbine rotor swept area, and battery capacity are obtained to be 3.95
m
2, 29.4
m
2, 31.92
kWh, respectively. These results led to $37,033.9 hybrid energy system cost, including auxiliary energy cost. The optimum result obtained by RSM is confirmed using loss of load probability (LLP) and autonomy analysis.</description><subject>Applied sciences</subject><subject>Batteries</subject><subject>case studies</subject><subject>Communications</subject><subject>Computer programs</subject><subject>Direct energy conversion and energy accumulation</subject><subject>Electrical engineering. Electrical power engineering</subject><subject>Electrical power engineering</subject><subject>Electrochemical conversion: primary and secondary batteries, fuel cells</subject><subject>Energy</subject><subject>Equipments, installations and applications</subject><subject>Exact sciences and technology</subject><subject>Hybrid energy</subject><subject>Hybrid energy Optimization Simulation Response surface methodology</subject><subject>hybrids</subject><subject>Natural energy</subject><subject>Optimization</subject><subject>Q1</subject><subject>Q3</subject><subject>Response surface methodology</subject><subject>Simulation</subject><subject>Solar energy</subject><subject>Solar thermal conversion</subject><subject>Storage</subject><subject>Technology</subject><subject>Turkey</subject><subject>Turkey, Anatolia, Izmir</subject><subject>Wind energy</subject><issn>0306-2619</issn><issn>1872-9118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNqFkU9v1DAQxSMEEkvhKyBf4JbUdhInvoEqCkhFIPHnak2c8a5XSRxs71bpp8dpSq89zLM1-r3nkSfL3jJaMMrE5bGAGSf0-6XglLYF5UVqP8t2rG14Lhlrn2c7WlKRc8Hky-xVCEdKKWec7rLzT3uHxM3RjvYOonUTcYYA-fHn8tZOPTksnbc92fKJdtMZfVipsISII7m18UA6iBH9QkJ0HvZITsFOe-IxzG4KSMLJG9BIRowH17vB7ZfX2QsDQ8A3D-dF9vv606-rL_nN989frz7e5LpqqpjzjvW0Z8IYWWuARkNZVpJBRYXUwvAKOl4zUeqGadkaynvDug7a3vCS6iQX2fstd_bu7wlDVKMNGocBJnSnoJgUZV3J6mmwautW3oNiA7V3IXg0avZ2BL8oRtW6D3VU__eh1n0oylVqJ-O3zehxRv3oQkSYV16dVQltnWRJde8swaZiLMm8XmgrFEtvqEMcU967h4khaBiMh0nb8JjLaSV53ZSJ-7BxmP75bNGroC1OGnvrUUfVO_vU6P8A8KzBUg</recordid><startdate>20081101</startdate><enddate>20081101</enddate><creator>Ekren, Orhan</creator><creator>Ekren, Banu Yetkin</creator><general>Elsevier Ltd</general><general>Elsevier Science</general><general>Elsevier</general><scope>IQODW</scope><scope>DKI</scope><scope>X2L</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>C1K</scope><scope>SOI</scope></search><sort><creationdate>20081101</creationdate><title>Size optimization of a PV/wind hybrid energy conversion system with battery storage using response surface methodology</title><author>Ekren, Orhan ; Ekren, Banu Yetkin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-2b1d0d16ff95caa7ca33491a4069c6f24ab25163c71c98f02df1bba8df230cf23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Applied sciences</topic><topic>Batteries</topic><topic>case studies</topic><topic>Communications</topic><topic>Computer programs</topic><topic>Direct energy conversion and energy accumulation</topic><topic>Electrical engineering. Electrical power engineering</topic><topic>Electrical power engineering</topic><topic>Electrochemical conversion: primary and secondary batteries, fuel cells</topic><topic>Energy</topic><topic>Equipments, installations and applications</topic><topic>Exact sciences and technology</topic><topic>Hybrid energy</topic><topic>Hybrid energy Optimization Simulation Response surface methodology</topic><topic>hybrids</topic><topic>Natural energy</topic><topic>Optimization</topic><topic>Q1</topic><topic>Q3</topic><topic>Response surface methodology</topic><topic>Simulation</topic><topic>Solar energy</topic><topic>Solar thermal conversion</topic><topic>Storage</topic><topic>Technology</topic><topic>Turkey</topic><topic>Turkey, Anatolia, Izmir</topic><topic>Wind energy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ekren, Orhan</creatorcontrib><creatorcontrib>Ekren, Banu Yetkin</creatorcontrib><collection>Pascal-Francis</collection><collection>RePEc IDEAS</collection><collection>RePEc</collection><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Environment Abstracts</collection><jtitle>Applied energy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ekren, Orhan</au><au>Ekren, Banu Yetkin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Size optimization of a PV/wind hybrid energy conversion system with battery storage using response surface methodology</atitle><jtitle>Applied energy</jtitle><date>2008-11-01</date><risdate>2008</risdate><volume>85</volume><issue>11</issue><spage>1086</spage><epage>1101</epage><pages>1086-1101</pages><issn>0306-2619</issn><eissn>1872-9118</eissn><coden>APENDX</coden><abstract>This paper aims to show the use of the response surface methodology (RSM) in size optimization of an autonomous PV/wind integrated hybrid energy system with battery storage. RSM is a collection of statistical and mathematical methods which relies on optimization of response surface with design parameters. In this study, the response surface, output performance measure, is the hybrid system cost, and the design parameters are the PV size, wind turbine rotor swept area and the battery capacity. The case study is realized in ARENA 10.0, a commercial simulation software, for satisfaction of electricity consumption of the global system for mobile communications (GSM) base station at Izmir Institute of Technology Campus Area, Urla, Turkey. As a result, the optimum PV area, wind turbine rotor swept area, and battery capacity are obtained to be 3.95
m
2, 29.4
m
2, 31.92
kWh, respectively. These results led to $37,033.9 hybrid energy system cost, including auxiliary energy cost. The optimum result obtained by RSM is confirmed using loss of load probability (LLP) and autonomy analysis.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.apenergy.2008.02.016</doi><tpages>16</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0306-2619 |
ispartof | Applied energy, 2008-11, Vol.85 (11), p.1086-1101 |
issn | 0306-2619 1872-9118 |
language | eng |
recordid | cdi_proquest_miscellaneous_19635494 |
source | ScienceDirect Freedom Collection |
subjects | Applied sciences Batteries case studies Communications Computer programs Direct energy conversion and energy accumulation Electrical engineering. Electrical power engineering Electrical power engineering Electrochemical conversion: primary and secondary batteries, fuel cells Energy Equipments, installations and applications Exact sciences and technology Hybrid energy Hybrid energy Optimization Simulation Response surface methodology hybrids Natural energy Optimization Q1 Q3 Response surface methodology Simulation Solar energy Solar thermal conversion Storage Technology Turkey Turkey, Anatolia, Izmir Wind energy |
title | Size optimization of a PV/wind hybrid energy conversion system with battery storage using response surface methodology |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T10%3A51%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Size%20optimization%20of%20a%20PV/wind%20hybrid%20energy%20conversion%20system%20with%20battery%20storage%20using%20response%20surface%20methodology&rft.jtitle=Applied%20energy&rft.au=Ekren,%20Orhan&rft.date=2008-11-01&rft.volume=85&rft.issue=11&rft.spage=1086&rft.epage=1101&rft.pages=1086-1101&rft.issn=0306-2619&rft.eissn=1872-9118&rft.coden=APENDX&rft_id=info:doi/10.1016/j.apenergy.2008.02.016&rft_dat=%3Cproquest_cross%3E8812080%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c474t-2b1d0d16ff95caa7ca33491a4069c6f24ab25163c71c98f02df1bba8df230cf23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=14858994&rft_id=info:pmid/&rfr_iscdi=true |