Loading…

Planning hydroelectric resources with recourse-based multistage interval-stochastic programming

Optimization models play an important role in long-term hydroelectric resources planning. The effectiveness of an optimization model, however, depends on its capability of dealing with uncertainties. This study presents a multistage interval-stochastic programming model for long-term hydropower plan...

Full description

Saved in:
Bibliographic Details
Published in:Stochastic environmental research and risk assessment 2009, Vol.23 (1), p.65-73
Main Authors: Luo, B., Zhou, D. C.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Optimization models play an important role in long-term hydroelectric resources planning. The effectiveness of an optimization model, however, depends on its capability of dealing with uncertainties. This study presents a multistage interval-stochastic programming model for long-term hydropower planning, in which uncertainties are reflected as randomness and intervals. The model is developed based on interval programming technique and recourse-based multistage stochastic programming and using the expected value of long-term hydroelectric profit as the objective function. A solution method of the developed model is also presented, which is based on a decomposition method by partitioning the multistage interval-stochastic program into two-stage stochastic programming sub-problems in each scenario-tree node. A hypothetical case study is used to demonstrate the developed model and its solution method. Modeling results demonstrates the computationally effectiveness of the solution method and reveal the applicability of the developed model for long term planning of hydroelectric resources.
ISSN:1436-3240
1436-3259
DOI:10.1007/s00477-007-0196-0