Loading…
Site-Specific Deuteration of Polyunsaturated Alkenes
Selective deuteration of drugs and biologically relevant molecules is becoming increasingly important in the pharmaceutical industry. Site-selective isotopic reinforcement of polyunsaturated fatty acids (PUFAs) at their bis-allylic sites has been identified as a unique approach in preventing oxidati...
Saved in:
Published in: | Journal of organic chemistry 2017-12, Vol.82 (24), p.13115-13120 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Selective deuteration of drugs and biologically relevant molecules is becoming increasingly important in the pharmaceutical industry. Site-selective isotopic reinforcement of polyunsaturated fatty acids (PUFAs) at their bis-allylic sites has been identified as a unique approach in preventing oxidative damage in these molecules, which had been linked to neuronal and retinal diseases, atherosclerosis, and aging. Typical methods for preparation of site-selectively deuterated PUFAs require rather long, laborious, and expensive syntheses. In this report, we disclose a very efficient catalytic protocol for site-specific deuteration of PUFAs and analogous poly-alkenes under exceptional kinetic control. Deuterium oxide (D2O) has been identified not only as a deuterium source but also as a crucial component in the overall reaction mechanism responsible for averting the formation of thermodynamically favored side-products. |
---|---|
ISSN: | 0022-3263 1520-6904 |
DOI: | 10.1021/acs.joc.7b02169 |