Loading…
High Time-Resolution Optical Sensor for Monitoring Atmospheric Nitrogen Dioxide
High time-resolution monitoring of nitrogen dioxide (NO2) is of great importance for studying the formation mechanism of aerosols and improving air quality. Based on the Griess–Saltzman (GS) reaction, a portable NO2 optical sensor was developed by employing a porous polypropylene membrane tube (PPMT...
Saved in:
Published in: | Analytical chemistry (Washington) 2017-12, Vol.89 (24), p.13064-13068 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | High time-resolution monitoring of nitrogen dioxide (NO2) is of great importance for studying the formation mechanism of aerosols and improving air quality. Based on the Griess–Saltzman (GS) reaction, a portable NO2 optical sensor was developed by employing a porous polypropylene membrane tube (PPMT) integrated gas permeation collector and detector. The PPMT was filled with GS reagents and covered with a coaxial jacket tube for gas collection. Its two ends were respectively fixed with a yellowish-green light-emitting diode and a photodiode for optic signal reception. NO2 was automatically introduced through the collector by two air pumps cooperating with a homemade gas injector. Under the optimized conditions, the device presented good performance for monitoring NO2, such as a limit of detection of 5.1 ppbv (parts per billion by volume), an intraday precision of 4.1% (RSD, relative standard deviation, n = 11, c = 100 ppbv), an interday precision of 5.7% (RSD, n = 2–3 per day for 5 days, c = 100 ppbv), an analysis time of 4.0 min, and a linearity range extended to 700 ppbv. The developed device was successfully applied to analyzing outdoor air with a comparable precision to that of the standard method of China. The high time-resolution characteristic that includes sampling 15 times per hour and a good stability for 10 days of urban air analysis had also been evaluated. |
---|---|
ISSN: | 0003-2700 1520-6882 |
DOI: | 10.1021/acs.analchem.7b03578 |