Loading…

Interaction between Water and Alkali Metal Ions and Its Temperature Dependence Revealed by Oxygen K‑Edge X‑ray Absorption Spectroscopy

Interaction between water molecules and alkali metal ions in aqueous salt solutions has been studied by the oxygen K-edge soft X-ray absorption spectroscopy (XAS) in transmission mode. In the measurement of several alkali halide aqueous solutions with different alkali chlorides (Li, Na, and K) and d...

Full description

Saved in:
Bibliographic Details
Published in:The journal of physical chemistry. B 2017-12, Vol.121 (48), p.10957-10964
Main Authors: Nagasaka, Masanari, Yuzawa, Hayato, Kosugi, Nobuhiro
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Interaction between water molecules and alkali metal ions in aqueous salt solutions has been studied by the oxygen K-edge soft X-ray absorption spectroscopy (XAS) in transmission mode. In the measurement of several alkali halide aqueous solutions with different alkali chlorides (Li, Na, and K) and different sodium halides (Cl, Br, and I), the pre-edge component arising from the hydration water molecules shows a blue shift in peak energy as strongly depending on cations but not on anions. In the temperature dependent measurement, the pre-edge component arising from water molecules beyond the first hydration shell shows the same behavior as that of pure liquid water. On the other hand, the pre-edge component arising from water molecules in the first hydration shell of Li+ ions is not evidently dependent on the temperature, indicating that the hydration water molecules are more strongly bound with Li+ ions than the other water molecules. These experimental results are supported by the results of radial distribution functions of the first hydration shell and their temperature dependence, evaluated by molecular dynamics simulations.
ISSN:1520-6106
1520-5207
DOI:10.1021/acs.jpcb.7b09789