Loading…
Freeze-drying of silica nanoparticles: redispersibility toward nanomedicine applications
To study freeze-drying of silica nanoparticles (SiO NPs) in order to find suitable conditions to produce lyophilized powders with no aggregation after resuspension and storage. SiO NPs were synthesized using a Stöber-based procedure, and characterized by scanning electron microscopy, dynamic light s...
Saved in:
Published in: | Nanomedicine (London, England) England), 2018-01, Vol.13 (2), p.179-190 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c371t-589f92e65cbf4ae8cc1a3ae03b5d9b88e22dd64ec72770bfd5049fc650cd69493 |
---|---|
cites | cdi_FETCH-LOGICAL-c371t-589f92e65cbf4ae8cc1a3ae03b5d9b88e22dd64ec72770bfd5049fc650cd69493 |
container_end_page | 190 |
container_issue | 2 |
container_start_page | 179 |
container_title | Nanomedicine (London, England) |
container_volume | 13 |
creator | Picco, Agustin S Ferreira, Larissa F Liberato, Michelle S Mondo, Gabriela B Cardoso, Mateus B |
description | To study freeze-drying of silica nanoparticles (SiO
NPs) in order to find suitable conditions to produce lyophilized powders with no aggregation after resuspension and storage.
SiO
NPs were synthesized using a Stöber-based procedure, and characterized by scanning electron microscopy, dynamic light scattering and nitrogen adsorption/desorption isotherms. SiO
NPs hydrodynamic diameters were compared prior and after freeze-drying in the presence/absence of carbohydrate protectants.
Glucose was found to be the most suitable protectant against the detrimental effects of lyophilization. The minimum concentration of carbohydrate required to effectively protect SiO
NPs from aggregation during freeze-drying is influenced by the nanoparticle's size and texture. Negligible aggregation was observed during storage.
Carbohydrates can be used during SiO
NPs freeze-drying process to obtain redispersable solids that maintain original sizes without residual aggregation. |
doi_str_mv | 10.2217/nnm-2017-0280 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1964698815</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1964698815</sourcerecordid><originalsourceid>FETCH-LOGICAL-c371t-589f92e65cbf4ae8cc1a3ae03b5d9b88e22dd64ec72770bfd5049fc650cd69493</originalsourceid><addsrcrecordid>eNp1kE1LxDAQhoMo7rp69CoFL16q-ehH4k0WV4UFLwreQppOJUub1qRF1l9vul09CJ5mhnnmZXgQOif4mlKS31jbxBSTPMaU4wM0J3nC40xk7HDXszjlXMzQifcbjFNOCT5GMyoIE4zxOXpbOYAviEu3NfY9aqvIm9poFVll20653uga_G3koDS-A-dNEfb9NurbT-XKHdaEnTYWItV1421vWutP0VGlag9n-7pAr6v7l-VjvH5-eFrerWPNctKH70QlKGSpLqpEAdeaKKYAsyItRcE5UFqWWQI6p3mOi6pMcSIqnaVYl5lIBFugqym3c-3HAL6XjfEa6lpZaAcviciSTHBO0oBe_kE37eBs-E5SRkkqBMEkUPFEadd676CSnTONcltJsByVy6BcjsrlqDzwF_vUoQgmfukfxwEQE1AN_eDAawNWg5ymH3f_hH8D4FyRqA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2321599101</pqid></control><display><type>article</type><title>Freeze-drying of silica nanoparticles: redispersibility toward nanomedicine applications</title><source>Open Access: PubMed Central</source><creator>Picco, Agustin S ; Ferreira, Larissa F ; Liberato, Michelle S ; Mondo, Gabriela B ; Cardoso, Mateus B</creator><creatorcontrib>Picco, Agustin S ; Ferreira, Larissa F ; Liberato, Michelle S ; Mondo, Gabriela B ; Cardoso, Mateus B</creatorcontrib><description>To study freeze-drying of silica nanoparticles (SiO
NPs) in order to find suitable conditions to produce lyophilized powders with no aggregation after resuspension and storage.
SiO
NPs were synthesized using a Stöber-based procedure, and characterized by scanning electron microscopy, dynamic light scattering and nitrogen adsorption/desorption isotherms. SiO
NPs hydrodynamic diameters were compared prior and after freeze-drying in the presence/absence of carbohydrate protectants.
Glucose was found to be the most suitable protectant against the detrimental effects of lyophilization. The minimum concentration of carbohydrate required to effectively protect SiO
NPs from aggregation during freeze-drying is influenced by the nanoparticle's size and texture. Negligible aggregation was observed during storage.
Carbohydrates can be used during SiO
NPs freeze-drying process to obtain redispersable solids that maintain original sizes without residual aggregation.</description><identifier>ISSN: 1743-5889</identifier><identifier>EISSN: 1748-6963</identifier><identifier>DOI: 10.2217/nnm-2017-0280</identifier><identifier>PMID: 29139338</identifier><language>eng</language><publisher>England: Future Medicine Ltd</publisher><subject>Ammonia ; Carbohydrates ; Carbohydrates - chemistry ; colloidal stability ; Drug Compounding ; Drug Stability ; Dynamic Light Scattering ; Ethanol ; Freeze Drying - methods ; freeze-drying ; Humans ; inorganic nanoparticles ; lyophilization ; Nanomedicine ; nanoparticle storage ; Nanoparticles ; Nanoparticles - chemistry ; Particle Size ; Powders ; redispersibility ; Scanning electron microscopy ; silica ; Silicon Dioxide - chemistry ; Solubility ; Surface Properties</subject><ispartof>Nanomedicine (London, England), 2018-01, Vol.13 (2), p.179-190</ispartof><rights>2017 Future Medicine Ltd</rights><rights>Copyright Future Medicine Ltd Jan 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c371t-589f92e65cbf4ae8cc1a3ae03b5d9b88e22dd64ec72770bfd5049fc650cd69493</citedby><cites>FETCH-LOGICAL-c371t-589f92e65cbf4ae8cc1a3ae03b5d9b88e22dd64ec72770bfd5049fc650cd69493</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29139338$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Picco, Agustin S</creatorcontrib><creatorcontrib>Ferreira, Larissa F</creatorcontrib><creatorcontrib>Liberato, Michelle S</creatorcontrib><creatorcontrib>Mondo, Gabriela B</creatorcontrib><creatorcontrib>Cardoso, Mateus B</creatorcontrib><title>Freeze-drying of silica nanoparticles: redispersibility toward nanomedicine applications</title><title>Nanomedicine (London, England)</title><addtitle>Nanomedicine (Lond)</addtitle><description>To study freeze-drying of silica nanoparticles (SiO
NPs) in order to find suitable conditions to produce lyophilized powders with no aggregation after resuspension and storage.
SiO
NPs were synthesized using a Stöber-based procedure, and characterized by scanning electron microscopy, dynamic light scattering and nitrogen adsorption/desorption isotherms. SiO
NPs hydrodynamic diameters were compared prior and after freeze-drying in the presence/absence of carbohydrate protectants.
Glucose was found to be the most suitable protectant against the detrimental effects of lyophilization. The minimum concentration of carbohydrate required to effectively protect SiO
NPs from aggregation during freeze-drying is influenced by the nanoparticle's size and texture. Negligible aggregation was observed during storage.
Carbohydrates can be used during SiO
NPs freeze-drying process to obtain redispersable solids that maintain original sizes without residual aggregation.</description><subject>Ammonia</subject><subject>Carbohydrates</subject><subject>Carbohydrates - chemistry</subject><subject>colloidal stability</subject><subject>Drug Compounding</subject><subject>Drug Stability</subject><subject>Dynamic Light Scattering</subject><subject>Ethanol</subject><subject>Freeze Drying - methods</subject><subject>freeze-drying</subject><subject>Humans</subject><subject>inorganic nanoparticles</subject><subject>lyophilization</subject><subject>Nanomedicine</subject><subject>nanoparticle storage</subject><subject>Nanoparticles</subject><subject>Nanoparticles - chemistry</subject><subject>Particle Size</subject><subject>Powders</subject><subject>redispersibility</subject><subject>Scanning electron microscopy</subject><subject>silica</subject><subject>Silicon Dioxide - chemistry</subject><subject>Solubility</subject><subject>Surface Properties</subject><issn>1743-5889</issn><issn>1748-6963</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LxDAQhoMo7rp69CoFL16q-ehH4k0WV4UFLwreQppOJUub1qRF1l9vul09CJ5mhnnmZXgQOif4mlKS31jbxBSTPMaU4wM0J3nC40xk7HDXszjlXMzQifcbjFNOCT5GMyoIE4zxOXpbOYAviEu3NfY9aqvIm9poFVll20653uga_G3koDS-A-dNEfb9NurbT-XKHdaEnTYWItV1421vWutP0VGlag9n-7pAr6v7l-VjvH5-eFrerWPNctKH70QlKGSpLqpEAdeaKKYAsyItRcE5UFqWWQI6p3mOi6pMcSIqnaVYl5lIBFugqym3c-3HAL6XjfEa6lpZaAcviciSTHBO0oBe_kE37eBs-E5SRkkqBMEkUPFEadd676CSnTONcltJsByVy6BcjsrlqDzwF_vUoQgmfukfxwEQE1AN_eDAawNWg5ymH3f_hH8D4FyRqA</recordid><startdate>20180101</startdate><enddate>20180101</enddate><creator>Picco, Agustin S</creator><creator>Ferreira, Larissa F</creator><creator>Liberato, Michelle S</creator><creator>Mondo, Gabriela B</creator><creator>Cardoso, Mateus B</creator><general>Future Medicine Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>EHMNL</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope></search><sort><creationdate>20180101</creationdate><title>Freeze-drying of silica nanoparticles: redispersibility toward nanomedicine applications</title><author>Picco, Agustin S ; Ferreira, Larissa F ; Liberato, Michelle S ; Mondo, Gabriela B ; Cardoso, Mateus B</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c371t-589f92e65cbf4ae8cc1a3ae03b5d9b88e22dd64ec72770bfd5049fc650cd69493</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Ammonia</topic><topic>Carbohydrates</topic><topic>Carbohydrates - chemistry</topic><topic>colloidal stability</topic><topic>Drug Compounding</topic><topic>Drug Stability</topic><topic>Dynamic Light Scattering</topic><topic>Ethanol</topic><topic>Freeze Drying - methods</topic><topic>freeze-drying</topic><topic>Humans</topic><topic>inorganic nanoparticles</topic><topic>lyophilization</topic><topic>Nanomedicine</topic><topic>nanoparticle storage</topic><topic>Nanoparticles</topic><topic>Nanoparticles - chemistry</topic><topic>Particle Size</topic><topic>Powders</topic><topic>redispersibility</topic><topic>Scanning electron microscopy</topic><topic>silica</topic><topic>Silicon Dioxide - chemistry</topic><topic>Solubility</topic><topic>Surface Properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Picco, Agustin S</creatorcontrib><creatorcontrib>Ferreira, Larissa F</creatorcontrib><creatorcontrib>Liberato, Michelle S</creatorcontrib><creatorcontrib>Mondo, Gabriela B</creatorcontrib><creatorcontrib>Cardoso, Mateus B</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>UK & Ireland Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><jtitle>Nanomedicine (London, England)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Picco, Agustin S</au><au>Ferreira, Larissa F</au><au>Liberato, Michelle S</au><au>Mondo, Gabriela B</au><au>Cardoso, Mateus B</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Freeze-drying of silica nanoparticles: redispersibility toward nanomedicine applications</atitle><jtitle>Nanomedicine (London, England)</jtitle><addtitle>Nanomedicine (Lond)</addtitle><date>2018-01-01</date><risdate>2018</risdate><volume>13</volume><issue>2</issue><spage>179</spage><epage>190</epage><pages>179-190</pages><issn>1743-5889</issn><eissn>1748-6963</eissn><abstract>To study freeze-drying of silica nanoparticles (SiO
NPs) in order to find suitable conditions to produce lyophilized powders with no aggregation after resuspension and storage.
SiO
NPs were synthesized using a Stöber-based procedure, and characterized by scanning electron microscopy, dynamic light scattering and nitrogen adsorption/desorption isotherms. SiO
NPs hydrodynamic diameters were compared prior and after freeze-drying in the presence/absence of carbohydrate protectants.
Glucose was found to be the most suitable protectant against the detrimental effects of lyophilization. The minimum concentration of carbohydrate required to effectively protect SiO
NPs from aggregation during freeze-drying is influenced by the nanoparticle's size and texture. Negligible aggregation was observed during storage.
Carbohydrates can be used during SiO
NPs freeze-drying process to obtain redispersable solids that maintain original sizes without residual aggregation.</abstract><cop>England</cop><pub>Future Medicine Ltd</pub><pmid>29139338</pmid><doi>10.2217/nnm-2017-0280</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1743-5889 |
ispartof | Nanomedicine (London, England), 2018-01, Vol.13 (2), p.179-190 |
issn | 1743-5889 1748-6963 |
language | eng |
recordid | cdi_proquest_miscellaneous_1964698815 |
source | Open Access: PubMed Central |
subjects | Ammonia Carbohydrates Carbohydrates - chemistry colloidal stability Drug Compounding Drug Stability Dynamic Light Scattering Ethanol Freeze Drying - methods freeze-drying Humans inorganic nanoparticles lyophilization Nanomedicine nanoparticle storage Nanoparticles Nanoparticles - chemistry Particle Size Powders redispersibility Scanning electron microscopy silica Silicon Dioxide - chemistry Solubility Surface Properties |
title | Freeze-drying of silica nanoparticles: redispersibility toward nanomedicine applications |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T20%3A44%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Freeze-drying%20of%20silica%20nanoparticles:%20redispersibility%20toward%20nanomedicine%20applications&rft.jtitle=Nanomedicine%20(London,%20England)&rft.au=Picco,%20Agustin%20S&rft.date=2018-01-01&rft.volume=13&rft.issue=2&rft.spage=179&rft.epage=190&rft.pages=179-190&rft.issn=1743-5889&rft.eissn=1748-6963&rft_id=info:doi/10.2217/nnm-2017-0280&rft_dat=%3Cproquest_cross%3E1964698815%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c371t-589f92e65cbf4ae8cc1a3ae03b5d9b88e22dd64ec72770bfd5049fc650cd69493%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2321599101&rft_id=info:pmid/29139338&rfr_iscdi=true |