Loading…
Forecasting carbon dioxide emissions based on a hybrid of mixed data sampling regression model and back propagation neural network in the USA
The accurate forecast of carbon dioxide emissions is critical for policy makers to take proper measures to establish a low carbon society. This paper discusses a hybrid of the mixed data sampling (MIDAS) regression model and BP (back propagation) neural network (MIDAS-BP model) to forecast carbon di...
Saved in:
Published in: | Environmental science and pollution research international 2018, Vol.25 (3), p.2899-2910 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c425t-d06a10d0d2fcc99126c819a78c740ebceecb4ebbb8fe83de353615d558aac7c13 |
---|---|
cites | cdi_FETCH-LOGICAL-c425t-d06a10d0d2fcc99126c819a78c740ebceecb4ebbb8fe83de353615d558aac7c13 |
container_end_page | 2910 |
container_issue | 3 |
container_start_page | 2899 |
container_title | Environmental science and pollution research international |
container_volume | 25 |
creator | Zhao, Xin Han, Meng Ding, Lili Calin, Adrian Cantemir |
description | The accurate forecast of carbon dioxide emissions is critical for policy makers to take proper measures to establish a low carbon society. This paper discusses a hybrid of the mixed data sampling (MIDAS) regression model and BP (back propagation) neural network (MIDAS-BP model) to forecast carbon dioxide emissions. Such analysis uses mixed frequency data to study the effects of quarterly economic growth on annual carbon dioxide emissions. The forecasting ability of MIDAS-BP is remarkably better than MIDAS, ordinary least square (OLS), polynomial distributed lags (PDL), autoregressive distributed lags (ADL), and auto-regressive moving average (ARMA) models. The MIDAS-BP model is suitable for forecasting carbon dioxide emissions for both the short and longer term. This research is expected to influence the methodology for forecasting carbon dioxide emissions by improving the forecast accuracy. Empirical results show that economic growth has both negative and positive effects on carbon dioxide emissions that last 15 quarters. Carbon dioxide emissions are also affected by their own change within 3 years. Therefore, there is a need for policy makers to explore an alternative way to develop the economy, especially applying new energy policies to establish a low carbon society. |
doi_str_mv | 10.1007/s11356-017-0642-6 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1965248111</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1965248111</sourcerecordid><originalsourceid>FETCH-LOGICAL-c425t-d06a10d0d2fcc99126c819a78c740ebceecb4ebbb8fe83de353615d558aac7c13</originalsourceid><addsrcrecordid>eNp1kc1u1TAQhS0EopfCA7BBltiwCXgcx4mXVUUBqRIL6Nryz-TWbWJf7ES0D8E743ALQkisxvL5zvFYh5CXwN4CY_27AtB2smHQN0wK3shHZAcSRNMLpR6THVNCNNAKcUKelXLDGGeK90_JCVcgWtXyHflxkTI6U5YQ99SZbFOkPqS74JHiHEoJKRZqTUFPq2To9b3NoZ5HOoe7eunNYmgx82HaEjLuM_4y0Tl5nKiJvrrdLT3kdDB7s2xSxDWbqY7le8q3NES6XCO9-nL2nDwZzVTwxcM8JVcX77-ef2wuP3_4dH522TjBu6XxTBpgnnk-OqcUcOkGUKYfXC8YWoforEBr7TDi0Hpsu1ZC57tuMMb1DtpT8uaYW7f6tmJZdP2qw2kyEdNaNCjZcTEAbOjrf9CbtOZYt9sooYBJtVFwpFxOpWQc9SGH2eR7DUxvXeljV7p2pbeutKyeVw_Jq53R_3H8LqcC_AiUKsU95r-e_m_qT04QoSI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1964910691</pqid></control><display><type>article</type><title>Forecasting carbon dioxide emissions based on a hybrid of mixed data sampling regression model and back propagation neural network in the USA</title><source>ABI/INFORM Global</source><source>Springer Nature</source><creator>Zhao, Xin ; Han, Meng ; Ding, Lili ; Calin, Adrian Cantemir</creator><creatorcontrib>Zhao, Xin ; Han, Meng ; Ding, Lili ; Calin, Adrian Cantemir</creatorcontrib><description>The accurate forecast of carbon dioxide emissions is critical for policy makers to take proper measures to establish a low carbon society. This paper discusses a hybrid of the mixed data sampling (MIDAS) regression model and BP (back propagation) neural network (MIDAS-BP model) to forecast carbon dioxide emissions. Such analysis uses mixed frequency data to study the effects of quarterly economic growth on annual carbon dioxide emissions. The forecasting ability of MIDAS-BP is remarkably better than MIDAS, ordinary least square (OLS), polynomial distributed lags (PDL), autoregressive distributed lags (ADL), and auto-regressive moving average (ARMA) models. The MIDAS-BP model is suitable for forecasting carbon dioxide emissions for both the short and longer term. This research is expected to influence the methodology for forecasting carbon dioxide emissions by improving the forecast accuracy. Empirical results show that economic growth has both negative and positive effects on carbon dioxide emissions that last 15 quarters. Carbon dioxide emissions are also affected by their own change within 3 years. Therefore, there is a need for policy makers to explore an alternative way to develop the economy, especially applying new energy policies to establish a low carbon society.</description><identifier>ISSN: 0944-1344</identifier><identifier>EISSN: 1614-7499</identifier><identifier>DOI: 10.1007/s11356-017-0642-6</identifier><identifier>PMID: 29143932</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Aquatic Pollution ; Atmospheric Protection/Air Quality Control/Air Pollution ; Autoregressive moving-average models ; Back propagation ; Back propagation networks ; Carbon dioxide ; Carbon dioxide emissions ; Data sampling ; Earth and Environmental Science ; Economic development ; Economic forecasting ; Economic growth ; Economic models ; Economics ; Ecotoxicology ; Emissions ; Empirical analysis ; Energy policy ; Environment ; Environmental Chemistry ; Environmental Health ; Environmental science ; Forecasting ; Neural networks ; Regression analysis ; Regression models ; Research Article ; Sampling ; Sulfuric acid ; Waste Water Technology ; Water Management ; Water Pollution Control</subject><ispartof>Environmental science and pollution research international, 2018, Vol.25 (3), p.2899-2910</ispartof><rights>Springer-Verlag GmbH Germany 2017</rights><rights>Environmental Science and Pollution Research is a copyright of Springer, (2017). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c425t-d06a10d0d2fcc99126c819a78c740ebceecb4ebbb8fe83de353615d558aac7c13</citedby><cites>FETCH-LOGICAL-c425t-d06a10d0d2fcc99126c819a78c740ebceecb4ebbb8fe83de353615d558aac7c13</cites><orcidid>0000-0002-3948-2188</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1964910691/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1964910691?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,11688,27924,27925,36060,36061,44363,74767</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29143932$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhao, Xin</creatorcontrib><creatorcontrib>Han, Meng</creatorcontrib><creatorcontrib>Ding, Lili</creatorcontrib><creatorcontrib>Calin, Adrian Cantemir</creatorcontrib><title>Forecasting carbon dioxide emissions based on a hybrid of mixed data sampling regression model and back propagation neural network in the USA</title><title>Environmental science and pollution research international</title><addtitle>Environ Sci Pollut Res</addtitle><addtitle>Environ Sci Pollut Res Int</addtitle><description>The accurate forecast of carbon dioxide emissions is critical for policy makers to take proper measures to establish a low carbon society. This paper discusses a hybrid of the mixed data sampling (MIDAS) regression model and BP (back propagation) neural network (MIDAS-BP model) to forecast carbon dioxide emissions. Such analysis uses mixed frequency data to study the effects of quarterly economic growth on annual carbon dioxide emissions. The forecasting ability of MIDAS-BP is remarkably better than MIDAS, ordinary least square (OLS), polynomial distributed lags (PDL), autoregressive distributed lags (ADL), and auto-regressive moving average (ARMA) models. The MIDAS-BP model is suitable for forecasting carbon dioxide emissions for both the short and longer term. This research is expected to influence the methodology for forecasting carbon dioxide emissions by improving the forecast accuracy. Empirical results show that economic growth has both negative and positive effects on carbon dioxide emissions that last 15 quarters. Carbon dioxide emissions are also affected by their own change within 3 years. Therefore, there is a need for policy makers to explore an alternative way to develop the economy, especially applying new energy policies to establish a low carbon society.</description><subject>Aquatic Pollution</subject><subject>Atmospheric Protection/Air Quality Control/Air Pollution</subject><subject>Autoregressive moving-average models</subject><subject>Back propagation</subject><subject>Back propagation networks</subject><subject>Carbon dioxide</subject><subject>Carbon dioxide emissions</subject><subject>Data sampling</subject><subject>Earth and Environmental Science</subject><subject>Economic development</subject><subject>Economic forecasting</subject><subject>Economic growth</subject><subject>Economic models</subject><subject>Economics</subject><subject>Ecotoxicology</subject><subject>Emissions</subject><subject>Empirical analysis</subject><subject>Energy policy</subject><subject>Environment</subject><subject>Environmental Chemistry</subject><subject>Environmental Health</subject><subject>Environmental science</subject><subject>Forecasting</subject><subject>Neural networks</subject><subject>Regression analysis</subject><subject>Regression models</subject><subject>Research Article</subject><subject>Sampling</subject><subject>Sulfuric acid</subject><subject>Waste Water Technology</subject><subject>Water Management</subject><subject>Water Pollution Control</subject><issn>0944-1344</issn><issn>1614-7499</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><recordid>eNp1kc1u1TAQhS0EopfCA7BBltiwCXgcx4mXVUUBqRIL6Nryz-TWbWJf7ES0D8E743ALQkisxvL5zvFYh5CXwN4CY_27AtB2smHQN0wK3shHZAcSRNMLpR6THVNCNNAKcUKelXLDGGeK90_JCVcgWtXyHflxkTI6U5YQ99SZbFOkPqS74JHiHEoJKRZqTUFPq2To9b3NoZ5HOoe7eunNYmgx82HaEjLuM_4y0Tl5nKiJvrrdLT3kdDB7s2xSxDWbqY7le8q3NES6XCO9-nL2nDwZzVTwxcM8JVcX77-ef2wuP3_4dH522TjBu6XxTBpgnnk-OqcUcOkGUKYfXC8YWoforEBr7TDi0Hpsu1ZC57tuMMb1DtpT8uaYW7f6tmJZdP2qw2kyEdNaNCjZcTEAbOjrf9CbtOZYt9sooYBJtVFwpFxOpWQc9SGH2eR7DUxvXeljV7p2pbeutKyeVw_Jq53R_3H8LqcC_AiUKsU95r-e_m_qT04QoSI</recordid><startdate>2018</startdate><enddate>2018</enddate><creator>Zhao, Xin</creator><creator>Han, Meng</creator><creator>Ding, Lili</creator><creator>Calin, Adrian Cantemir</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7SN</scope><scope>7T7</scope><scope>7TV</scope><scope>7U7</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X7</scope><scope>7XB</scope><scope>87Z</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K60</scope><scope>K6~</scope><scope>K9.</scope><scope>L.-</scope><scope>M0C</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7N</scope><scope>P64</scope><scope>PATMY</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-3948-2188</orcidid></search><sort><creationdate>2018</creationdate><title>Forecasting carbon dioxide emissions based on a hybrid of mixed data sampling regression model and back propagation neural network in the USA</title><author>Zhao, Xin ; Han, Meng ; Ding, Lili ; Calin, Adrian Cantemir</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c425t-d06a10d0d2fcc99126c819a78c740ebceecb4ebbb8fe83de353615d558aac7c13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Aquatic Pollution</topic><topic>Atmospheric Protection/Air Quality Control/Air Pollution</topic><topic>Autoregressive moving-average models</topic><topic>Back propagation</topic><topic>Back propagation networks</topic><topic>Carbon dioxide</topic><topic>Carbon dioxide emissions</topic><topic>Data sampling</topic><topic>Earth and Environmental Science</topic><topic>Economic development</topic><topic>Economic forecasting</topic><topic>Economic growth</topic><topic>Economic models</topic><topic>Economics</topic><topic>Ecotoxicology</topic><topic>Emissions</topic><topic>Empirical analysis</topic><topic>Energy policy</topic><topic>Environment</topic><topic>Environmental Chemistry</topic><topic>Environmental Health</topic><topic>Environmental science</topic><topic>Forecasting</topic><topic>Neural networks</topic><topic>Regression analysis</topic><topic>Regression models</topic><topic>Research Article</topic><topic>Sampling</topic><topic>Sulfuric acid</topic><topic>Waste Water Technology</topic><topic>Water Management</topic><topic>Water Pollution Control</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhao, Xin</creatorcontrib><creatorcontrib>Han, Meng</creatorcontrib><creatorcontrib>Ding, Lili</creatorcontrib><creatorcontrib>Calin, Adrian Cantemir</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Ecology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Pollution Abstracts</collection><collection>Toxicology Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Health & Medical Collection (Proquest)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest Public Health Database</collection><collection>Technology Research Database</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Global</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>ProQuest Science Journals</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>Environmental science and pollution research international</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhao, Xin</au><au>Han, Meng</au><au>Ding, Lili</au><au>Calin, Adrian Cantemir</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Forecasting carbon dioxide emissions based on a hybrid of mixed data sampling regression model and back propagation neural network in the USA</atitle><jtitle>Environmental science and pollution research international</jtitle><stitle>Environ Sci Pollut Res</stitle><addtitle>Environ Sci Pollut Res Int</addtitle><date>2018</date><risdate>2018</risdate><volume>25</volume><issue>3</issue><spage>2899</spage><epage>2910</epage><pages>2899-2910</pages><issn>0944-1344</issn><eissn>1614-7499</eissn><abstract>The accurate forecast of carbon dioxide emissions is critical for policy makers to take proper measures to establish a low carbon society. This paper discusses a hybrid of the mixed data sampling (MIDAS) regression model and BP (back propagation) neural network (MIDAS-BP model) to forecast carbon dioxide emissions. Such analysis uses mixed frequency data to study the effects of quarterly economic growth on annual carbon dioxide emissions. The forecasting ability of MIDAS-BP is remarkably better than MIDAS, ordinary least square (OLS), polynomial distributed lags (PDL), autoregressive distributed lags (ADL), and auto-regressive moving average (ARMA) models. The MIDAS-BP model is suitable for forecasting carbon dioxide emissions for both the short and longer term. This research is expected to influence the methodology for forecasting carbon dioxide emissions by improving the forecast accuracy. Empirical results show that economic growth has both negative and positive effects on carbon dioxide emissions that last 15 quarters. Carbon dioxide emissions are also affected by their own change within 3 years. Therefore, there is a need for policy makers to explore an alternative way to develop the economy, especially applying new energy policies to establish a low carbon society.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>29143932</pmid><doi>10.1007/s11356-017-0642-6</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-3948-2188</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0944-1344 |
ispartof | Environmental science and pollution research international, 2018, Vol.25 (3), p.2899-2910 |
issn | 0944-1344 1614-7499 |
language | eng |
recordid | cdi_proquest_miscellaneous_1965248111 |
source | ABI/INFORM Global; Springer Nature |
subjects | Aquatic Pollution Atmospheric Protection/Air Quality Control/Air Pollution Autoregressive moving-average models Back propagation Back propagation networks Carbon dioxide Carbon dioxide emissions Data sampling Earth and Environmental Science Economic development Economic forecasting Economic growth Economic models Economics Ecotoxicology Emissions Empirical analysis Energy policy Environment Environmental Chemistry Environmental Health Environmental science Forecasting Neural networks Regression analysis Regression models Research Article Sampling Sulfuric acid Waste Water Technology Water Management Water Pollution Control |
title | Forecasting carbon dioxide emissions based on a hybrid of mixed data sampling regression model and back propagation neural network in the USA |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T16%3A29%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Forecasting%20carbon%20dioxide%20emissions%20based%20on%20a%20hybrid%20of%20mixed%20data%20sampling%20regression%20model%20and%20back%20propagation%20neural%20network%20in%20the%20USA&rft.jtitle=Environmental%20science%20and%20pollution%20research%20international&rft.au=Zhao,%20Xin&rft.date=2018&rft.volume=25&rft.issue=3&rft.spage=2899&rft.epage=2910&rft.pages=2899-2910&rft.issn=0944-1344&rft.eissn=1614-7499&rft_id=info:doi/10.1007/s11356-017-0642-6&rft_dat=%3Cproquest_cross%3E1965248111%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c425t-d06a10d0d2fcc99126c819a78c740ebceecb4ebbb8fe83de353615d558aac7c13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1964910691&rft_id=info:pmid/29143932&rfr_iscdi=true |