Loading…

Forecasting carbon dioxide emissions based on a hybrid of mixed data sampling regression model and back propagation neural network in the USA

The accurate forecast of carbon dioxide emissions is critical for policy makers to take proper measures to establish a low carbon society. This paper discusses a hybrid of the mixed data sampling (MIDAS) regression model and BP (back propagation) neural network (MIDAS-BP model) to forecast carbon di...

Full description

Saved in:
Bibliographic Details
Published in:Environmental science and pollution research international 2018, Vol.25 (3), p.2899-2910
Main Authors: Zhao, Xin, Han, Meng, Ding, Lili, Calin, Adrian Cantemir
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c425t-d06a10d0d2fcc99126c819a78c740ebceecb4ebbb8fe83de353615d558aac7c13
cites cdi_FETCH-LOGICAL-c425t-d06a10d0d2fcc99126c819a78c740ebceecb4ebbb8fe83de353615d558aac7c13
container_end_page 2910
container_issue 3
container_start_page 2899
container_title Environmental science and pollution research international
container_volume 25
creator Zhao, Xin
Han, Meng
Ding, Lili
Calin, Adrian Cantemir
description The accurate forecast of carbon dioxide emissions is critical for policy makers to take proper measures to establish a low carbon society. This paper discusses a hybrid of the mixed data sampling (MIDAS) regression model and BP (back propagation) neural network (MIDAS-BP model) to forecast carbon dioxide emissions. Such analysis uses mixed frequency data to study the effects of quarterly economic growth on annual carbon dioxide emissions. The forecasting ability of MIDAS-BP is remarkably better than MIDAS, ordinary least square (OLS), polynomial distributed lags (PDL), autoregressive distributed lags (ADL), and auto-regressive moving average (ARMA) models. The MIDAS-BP model is suitable for forecasting carbon dioxide emissions for both the short and longer term. This research is expected to influence the methodology for forecasting carbon dioxide emissions by improving the forecast accuracy. Empirical results show that economic growth has both negative and positive effects on carbon dioxide emissions that last 15 quarters. Carbon dioxide emissions are also affected by their own change within 3 years. Therefore, there is a need for policy makers to explore an alternative way to develop the economy, especially applying new energy policies to establish a low carbon society.
doi_str_mv 10.1007/s11356-017-0642-6
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1965248111</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1965248111</sourcerecordid><originalsourceid>FETCH-LOGICAL-c425t-d06a10d0d2fcc99126c819a78c740ebceecb4ebbb8fe83de353615d558aac7c13</originalsourceid><addsrcrecordid>eNp1kc1u1TAQhS0EopfCA7BBltiwCXgcx4mXVUUBqRIL6Nryz-TWbWJf7ES0D8E743ALQkisxvL5zvFYh5CXwN4CY_27AtB2smHQN0wK3shHZAcSRNMLpR6THVNCNNAKcUKelXLDGGeK90_JCVcgWtXyHflxkTI6U5YQ99SZbFOkPqS74JHiHEoJKRZqTUFPq2To9b3NoZ5HOoe7eunNYmgx82HaEjLuM_4y0Tl5nKiJvrrdLT3kdDB7s2xSxDWbqY7le8q3NES6XCO9-nL2nDwZzVTwxcM8JVcX77-ef2wuP3_4dH522TjBu6XxTBpgnnk-OqcUcOkGUKYfXC8YWoforEBr7TDi0Hpsu1ZC57tuMMb1DtpT8uaYW7f6tmJZdP2qw2kyEdNaNCjZcTEAbOjrf9CbtOZYt9sooYBJtVFwpFxOpWQc9SGH2eR7DUxvXeljV7p2pbeutKyeVw_Jq53R_3H8LqcC_AiUKsU95r-e_m_qT04QoSI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1964910691</pqid></control><display><type>article</type><title>Forecasting carbon dioxide emissions based on a hybrid of mixed data sampling regression model and back propagation neural network in the USA</title><source>ABI/INFORM Global</source><source>Springer Nature</source><creator>Zhao, Xin ; Han, Meng ; Ding, Lili ; Calin, Adrian Cantemir</creator><creatorcontrib>Zhao, Xin ; Han, Meng ; Ding, Lili ; Calin, Adrian Cantemir</creatorcontrib><description>The accurate forecast of carbon dioxide emissions is critical for policy makers to take proper measures to establish a low carbon society. This paper discusses a hybrid of the mixed data sampling (MIDAS) regression model and BP (back propagation) neural network (MIDAS-BP model) to forecast carbon dioxide emissions. Such analysis uses mixed frequency data to study the effects of quarterly economic growth on annual carbon dioxide emissions. The forecasting ability of MIDAS-BP is remarkably better than MIDAS, ordinary least square (OLS), polynomial distributed lags (PDL), autoregressive distributed lags (ADL), and auto-regressive moving average (ARMA) models. The MIDAS-BP model is suitable for forecasting carbon dioxide emissions for both the short and longer term. This research is expected to influence the methodology for forecasting carbon dioxide emissions by improving the forecast accuracy. Empirical results show that economic growth has both negative and positive effects on carbon dioxide emissions that last 15 quarters. Carbon dioxide emissions are also affected by their own change within 3 years. Therefore, there is a need for policy makers to explore an alternative way to develop the economy, especially applying new energy policies to establish a low carbon society.</description><identifier>ISSN: 0944-1344</identifier><identifier>EISSN: 1614-7499</identifier><identifier>DOI: 10.1007/s11356-017-0642-6</identifier><identifier>PMID: 29143932</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Aquatic Pollution ; Atmospheric Protection/Air Quality Control/Air Pollution ; Autoregressive moving-average models ; Back propagation ; Back propagation networks ; Carbon dioxide ; Carbon dioxide emissions ; Data sampling ; Earth and Environmental Science ; Economic development ; Economic forecasting ; Economic growth ; Economic models ; Economics ; Ecotoxicology ; Emissions ; Empirical analysis ; Energy policy ; Environment ; Environmental Chemistry ; Environmental Health ; Environmental science ; Forecasting ; Neural networks ; Regression analysis ; Regression models ; Research Article ; Sampling ; Sulfuric acid ; Waste Water Technology ; Water Management ; Water Pollution Control</subject><ispartof>Environmental science and pollution research international, 2018, Vol.25 (3), p.2899-2910</ispartof><rights>Springer-Verlag GmbH Germany 2017</rights><rights>Environmental Science and Pollution Research is a copyright of Springer, (2017). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c425t-d06a10d0d2fcc99126c819a78c740ebceecb4ebbb8fe83de353615d558aac7c13</citedby><cites>FETCH-LOGICAL-c425t-d06a10d0d2fcc99126c819a78c740ebceecb4ebbb8fe83de353615d558aac7c13</cites><orcidid>0000-0002-3948-2188</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1964910691/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1964910691?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,11688,27924,27925,36060,36061,44363,74767</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29143932$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhao, Xin</creatorcontrib><creatorcontrib>Han, Meng</creatorcontrib><creatorcontrib>Ding, Lili</creatorcontrib><creatorcontrib>Calin, Adrian Cantemir</creatorcontrib><title>Forecasting carbon dioxide emissions based on a hybrid of mixed data sampling regression model and back propagation neural network in the USA</title><title>Environmental science and pollution research international</title><addtitle>Environ Sci Pollut Res</addtitle><addtitle>Environ Sci Pollut Res Int</addtitle><description>The accurate forecast of carbon dioxide emissions is critical for policy makers to take proper measures to establish a low carbon society. This paper discusses a hybrid of the mixed data sampling (MIDAS) regression model and BP (back propagation) neural network (MIDAS-BP model) to forecast carbon dioxide emissions. Such analysis uses mixed frequency data to study the effects of quarterly economic growth on annual carbon dioxide emissions. The forecasting ability of MIDAS-BP is remarkably better than MIDAS, ordinary least square (OLS), polynomial distributed lags (PDL), autoregressive distributed lags (ADL), and auto-regressive moving average (ARMA) models. The MIDAS-BP model is suitable for forecasting carbon dioxide emissions for both the short and longer term. This research is expected to influence the methodology for forecasting carbon dioxide emissions by improving the forecast accuracy. Empirical results show that economic growth has both negative and positive effects on carbon dioxide emissions that last 15 quarters. Carbon dioxide emissions are also affected by their own change within 3 years. Therefore, there is a need for policy makers to explore an alternative way to develop the economy, especially applying new energy policies to establish a low carbon society.</description><subject>Aquatic Pollution</subject><subject>Atmospheric Protection/Air Quality Control/Air Pollution</subject><subject>Autoregressive moving-average models</subject><subject>Back propagation</subject><subject>Back propagation networks</subject><subject>Carbon dioxide</subject><subject>Carbon dioxide emissions</subject><subject>Data sampling</subject><subject>Earth and Environmental Science</subject><subject>Economic development</subject><subject>Economic forecasting</subject><subject>Economic growth</subject><subject>Economic models</subject><subject>Economics</subject><subject>Ecotoxicology</subject><subject>Emissions</subject><subject>Empirical analysis</subject><subject>Energy policy</subject><subject>Environment</subject><subject>Environmental Chemistry</subject><subject>Environmental Health</subject><subject>Environmental science</subject><subject>Forecasting</subject><subject>Neural networks</subject><subject>Regression analysis</subject><subject>Regression models</subject><subject>Research Article</subject><subject>Sampling</subject><subject>Sulfuric acid</subject><subject>Waste Water Technology</subject><subject>Water Management</subject><subject>Water Pollution Control</subject><issn>0944-1344</issn><issn>1614-7499</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><recordid>eNp1kc1u1TAQhS0EopfCA7BBltiwCXgcx4mXVUUBqRIL6Nryz-TWbWJf7ES0D8E743ALQkisxvL5zvFYh5CXwN4CY_27AtB2smHQN0wK3shHZAcSRNMLpR6THVNCNNAKcUKelXLDGGeK90_JCVcgWtXyHflxkTI6U5YQ99SZbFOkPqS74JHiHEoJKRZqTUFPq2To9b3NoZ5HOoe7eunNYmgx82HaEjLuM_4y0Tl5nKiJvrrdLT3kdDB7s2xSxDWbqY7le8q3NES6XCO9-nL2nDwZzVTwxcM8JVcX77-ef2wuP3_4dH522TjBu6XxTBpgnnk-OqcUcOkGUKYfXC8YWoforEBr7TDi0Hpsu1ZC57tuMMb1DtpT8uaYW7f6tmJZdP2qw2kyEdNaNCjZcTEAbOjrf9CbtOZYt9sooYBJtVFwpFxOpWQc9SGH2eR7DUxvXeljV7p2pbeutKyeVw_Jq53R_3H8LqcC_AiUKsU95r-e_m_qT04QoSI</recordid><startdate>2018</startdate><enddate>2018</enddate><creator>Zhao, Xin</creator><creator>Han, Meng</creator><creator>Ding, Lili</creator><creator>Calin, Adrian Cantemir</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7SN</scope><scope>7T7</scope><scope>7TV</scope><scope>7U7</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X7</scope><scope>7XB</scope><scope>87Z</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K60</scope><scope>K6~</scope><scope>K9.</scope><scope>L.-</scope><scope>M0C</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7N</scope><scope>P64</scope><scope>PATMY</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-3948-2188</orcidid></search><sort><creationdate>2018</creationdate><title>Forecasting carbon dioxide emissions based on a hybrid of mixed data sampling regression model and back propagation neural network in the USA</title><author>Zhao, Xin ; Han, Meng ; Ding, Lili ; Calin, Adrian Cantemir</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c425t-d06a10d0d2fcc99126c819a78c740ebceecb4ebbb8fe83de353615d558aac7c13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Aquatic Pollution</topic><topic>Atmospheric Protection/Air Quality Control/Air Pollution</topic><topic>Autoregressive moving-average models</topic><topic>Back propagation</topic><topic>Back propagation networks</topic><topic>Carbon dioxide</topic><topic>Carbon dioxide emissions</topic><topic>Data sampling</topic><topic>Earth and Environmental Science</topic><topic>Economic development</topic><topic>Economic forecasting</topic><topic>Economic growth</topic><topic>Economic models</topic><topic>Economics</topic><topic>Ecotoxicology</topic><topic>Emissions</topic><topic>Empirical analysis</topic><topic>Energy policy</topic><topic>Environment</topic><topic>Environmental Chemistry</topic><topic>Environmental Health</topic><topic>Environmental science</topic><topic>Forecasting</topic><topic>Neural networks</topic><topic>Regression analysis</topic><topic>Regression models</topic><topic>Research Article</topic><topic>Sampling</topic><topic>Sulfuric acid</topic><topic>Waste Water Technology</topic><topic>Water Management</topic><topic>Water Pollution Control</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhao, Xin</creatorcontrib><creatorcontrib>Han, Meng</creatorcontrib><creatorcontrib>Ding, Lili</creatorcontrib><creatorcontrib>Calin, Adrian Cantemir</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Ecology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Pollution Abstracts</collection><collection>Toxicology Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Health &amp; Medical Collection (Proquest)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest Public Health Database</collection><collection>Technology Research Database</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Global</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>ProQuest Science Journals</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>Environmental science and pollution research international</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhao, Xin</au><au>Han, Meng</au><au>Ding, Lili</au><au>Calin, Adrian Cantemir</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Forecasting carbon dioxide emissions based on a hybrid of mixed data sampling regression model and back propagation neural network in the USA</atitle><jtitle>Environmental science and pollution research international</jtitle><stitle>Environ Sci Pollut Res</stitle><addtitle>Environ Sci Pollut Res Int</addtitle><date>2018</date><risdate>2018</risdate><volume>25</volume><issue>3</issue><spage>2899</spage><epage>2910</epage><pages>2899-2910</pages><issn>0944-1344</issn><eissn>1614-7499</eissn><abstract>The accurate forecast of carbon dioxide emissions is critical for policy makers to take proper measures to establish a low carbon society. This paper discusses a hybrid of the mixed data sampling (MIDAS) regression model and BP (back propagation) neural network (MIDAS-BP model) to forecast carbon dioxide emissions. Such analysis uses mixed frequency data to study the effects of quarterly economic growth on annual carbon dioxide emissions. The forecasting ability of MIDAS-BP is remarkably better than MIDAS, ordinary least square (OLS), polynomial distributed lags (PDL), autoregressive distributed lags (ADL), and auto-regressive moving average (ARMA) models. The MIDAS-BP model is suitable for forecasting carbon dioxide emissions for both the short and longer term. This research is expected to influence the methodology for forecasting carbon dioxide emissions by improving the forecast accuracy. Empirical results show that economic growth has both negative and positive effects on carbon dioxide emissions that last 15 quarters. Carbon dioxide emissions are also affected by their own change within 3 years. Therefore, there is a need for policy makers to explore an alternative way to develop the economy, especially applying new energy policies to establish a low carbon society.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>29143932</pmid><doi>10.1007/s11356-017-0642-6</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-3948-2188</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0944-1344
ispartof Environmental science and pollution research international, 2018, Vol.25 (3), p.2899-2910
issn 0944-1344
1614-7499
language eng
recordid cdi_proquest_miscellaneous_1965248111
source ABI/INFORM Global; Springer Nature
subjects Aquatic Pollution
Atmospheric Protection/Air Quality Control/Air Pollution
Autoregressive moving-average models
Back propagation
Back propagation networks
Carbon dioxide
Carbon dioxide emissions
Data sampling
Earth and Environmental Science
Economic development
Economic forecasting
Economic growth
Economic models
Economics
Ecotoxicology
Emissions
Empirical analysis
Energy policy
Environment
Environmental Chemistry
Environmental Health
Environmental science
Forecasting
Neural networks
Regression analysis
Regression models
Research Article
Sampling
Sulfuric acid
Waste Water Technology
Water Management
Water Pollution Control
title Forecasting carbon dioxide emissions based on a hybrid of mixed data sampling regression model and back propagation neural network in the USA
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T16%3A29%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Forecasting%20carbon%20dioxide%20emissions%20based%20on%20a%20hybrid%20of%20mixed%20data%20sampling%20regression%20model%20and%20back%20propagation%20neural%20network%20in%20the%20USA&rft.jtitle=Environmental%20science%20and%20pollution%20research%20international&rft.au=Zhao,%20Xin&rft.date=2018&rft.volume=25&rft.issue=3&rft.spage=2899&rft.epage=2910&rft.pages=2899-2910&rft.issn=0944-1344&rft.eissn=1614-7499&rft_id=info:doi/10.1007/s11356-017-0642-6&rft_dat=%3Cproquest_cross%3E1965248111%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c425t-d06a10d0d2fcc99126c819a78c740ebceecb4ebbb8fe83de353615d558aac7c13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1964910691&rft_id=info:pmid/29143932&rfr_iscdi=true