Loading…

An overview of methods to mitigate artifacts in optical coherence tomography imaging of the skin

Background Optical coherence tomography (OCT) of skin delivers three‐dimensional images of tissue microstructures. Although OCT imaging offers a promising high‐resolution modality, OCT images suffer from some artifacts that lead to misinterpretation of tissue structures. Therefore, an overview of me...

Full description

Saved in:
Bibliographic Details
Published in:Skin research and technology 2018-05, Vol.24 (2), p.265-273
Main Authors: Adabi, Saba, Fotouhi, Audrey, Xu, Qiuyun, Daveluy, Steve, Mehregan, Darius, Podoleanu, Adrian, Nasiriavanaki, Mohammadreza
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c3883-b548d757626fa2345bece1b08eed8e25df9b322dbac765458fc4666612daf47a3
cites cdi_FETCH-LOGICAL-c3883-b548d757626fa2345bece1b08eed8e25df9b322dbac765458fc4666612daf47a3
container_end_page 273
container_issue 2
container_start_page 265
container_title Skin research and technology
container_volume 24
creator Adabi, Saba
Fotouhi, Audrey
Xu, Qiuyun
Daveluy, Steve
Mehregan, Darius
Podoleanu, Adrian
Nasiriavanaki, Mohammadreza
description Background Optical coherence tomography (OCT) of skin delivers three‐dimensional images of tissue microstructures. Although OCT imaging offers a promising high‐resolution modality, OCT images suffer from some artifacts that lead to misinterpretation of tissue structures. Therefore, an overview of methods to mitigate artifacts in OCT imaging of the skin is of paramount importance. Speckle, intensity decay, and blurring are three major artifacts in OCT images. Speckle is due to the low coherent light source used in the configuration of OCT. Intensity decay is a deterioration of light with respect to depth, and blurring is the consequence of deficiencies of optical components. Method Two speckle reduction methods (one based on artificial neural network and one based on spatial compounding), an attenuation compensation algorithm (based on Beer‐Lambert law) and a deblurring procedure (using deconvolution), are described. Moreover, optical properties extraction algorithm based on extended Huygens‐Fresnel (EHF) principle to obtain some additional information from OCT images are discussed. Results In this short overview, we summarize some of the image enhancement algorithms for OCT images which address the abovementioned artifacts. The results showed a significant improvement in the visibility of the clinically relevant features in the images. The quality improvement was evaluated using several numerical assessment measures. Conclusion Clinical dermatologists benefit from using these image enhancement algorithms to improve OCT diagnosis and essentially function as a noninvasive optical biopsy.
doi_str_mv 10.1111/srt.12423
format article
fullrecord <record><control><sourceid>proquest_24P</sourceid><recordid>TN_cdi_proquest_miscellaneous_1965260110</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1965260110</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3883-b548d757626fa2345bece1b08eed8e25df9b322dbac765458fc4666612daf47a3</originalsourceid><addsrcrecordid>eNp10E1PGzEQBmALFZUAPfAHKktc4LDg7909RogvKRJSC1Jvrtc7mzjdXQfbAeXfY0jaA1LnMpdHr2ZehE4ouaB5LmNIF5QJxvfQhCpCClIJ9QVNSE3qopTs1wE6jHFJCJE15V_RAaup4ILVE_R7OmL_AuHFwSv2HR4gLXwbcfJ4cMnNTQJsQnKdsSlil_EqOWt6bP0CAowWMh38PJjVYoPdYOZunL8HpQXg-MeNx2i_M32Eb7t9hJ5urh-v7orZw-391XRWWF5VvGikqNpSloqpzjAuZAMWaEMqgLYCJtuubjhjbWNsqaSQVWeFykNZazpRGn6Ezra5q-Cf1xCTHly00PdmBL-OmtZKMkUoJZmefqJLvw5jvk4zwqSsOeMqq_OtssHHGKDTq5D_CxtNiX6vXefa9Uft2X7fJa6bAdp_8m_PGVxuwavrYfP_JP3zx-M28g2WYIx7</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2025593236</pqid></control><display><type>article</type><title>An overview of methods to mitigate artifacts in optical coherence tomography imaging of the skin</title><source>Wiley-Blackwell Titles (Open access)</source><creator>Adabi, Saba ; Fotouhi, Audrey ; Xu, Qiuyun ; Daveluy, Steve ; Mehregan, Darius ; Podoleanu, Adrian ; Nasiriavanaki, Mohammadreza</creator><creatorcontrib>Adabi, Saba ; Fotouhi, Audrey ; Xu, Qiuyun ; Daveluy, Steve ; Mehregan, Darius ; Podoleanu, Adrian ; Nasiriavanaki, Mohammadreza</creatorcontrib><description>Background Optical coherence tomography (OCT) of skin delivers three‐dimensional images of tissue microstructures. Although OCT imaging offers a promising high‐resolution modality, OCT images suffer from some artifacts that lead to misinterpretation of tissue structures. Therefore, an overview of methods to mitigate artifacts in OCT imaging of the skin is of paramount importance. Speckle, intensity decay, and blurring are three major artifacts in OCT images. Speckle is due to the low coherent light source used in the configuration of OCT. Intensity decay is a deterioration of light with respect to depth, and blurring is the consequence of deficiencies of optical components. Method Two speckle reduction methods (one based on artificial neural network and one based on spatial compounding), an attenuation compensation algorithm (based on Beer‐Lambert law) and a deblurring procedure (using deconvolution), are described. Moreover, optical properties extraction algorithm based on extended Huygens‐Fresnel (EHF) principle to obtain some additional information from OCT images are discussed. Results In this short overview, we summarize some of the image enhancement algorithms for OCT images which address the abovementioned artifacts. The results showed a significant improvement in the visibility of the clinically relevant features in the images. The quality improvement was evaluated using several numerical assessment measures. Conclusion Clinical dermatologists benefit from using these image enhancement algorithms to improve OCT diagnosis and essentially function as a noninvasive optical biopsy.</description><identifier>ISSN: 0909-752X</identifier><identifier>EISSN: 1600-0846</identifier><identifier>DOI: 10.1111/srt.12423</identifier><identifier>PMID: 29143429</identifier><language>eng</language><publisher>England: John Wiley &amp; Sons, Inc</publisher><subject>Algorithms ; Artificial neural networks ; Biopsy ; Blurring ; blurring correction ; Coherent light ; Decay ; Extremely high frequencies ; Image enhancement ; Image quality ; intensity decay compensation ; Light sources ; Luminous intensity ; Medical imaging ; Neural networks ; Optical Coherence Tomography ; Optical components ; Optical properties ; Planet detection ; Quality control ; Reviews ; Skin ; speckle reduction ; Tomography</subject><ispartof>Skin research and technology, 2018-05, Vol.24 (2), p.265-273</ispartof><rights>2017 John Wiley &amp; Sons A/S. Published by John Wiley &amp; Sons Ltd</rights><rights>2017 John Wiley &amp; Sons A/S. Published by John Wiley &amp; Sons Ltd.</rights><rights>Copyright © 2018 John Wiley &amp; Sons Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3883-b548d757626fa2345bece1b08eed8e25df9b322dbac765458fc4666612daf47a3</citedby><cites>FETCH-LOGICAL-c3883-b548d757626fa2345bece1b08eed8e25df9b322dbac765458fc4666612daf47a3</cites><orcidid>0000-0002-1437-8456</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fsrt.12423$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fsrt.12423$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,11562,27924,27925,46052,46476</link.rule.ids><linktorsrc>$$Uhttps://onlinelibrary.wiley.com/doi/abs/10.1111%2Fsrt.12423$$EView_record_in_Wiley-Blackwell$$FView_record_in_$$GWiley-Blackwell</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29143429$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Adabi, Saba</creatorcontrib><creatorcontrib>Fotouhi, Audrey</creatorcontrib><creatorcontrib>Xu, Qiuyun</creatorcontrib><creatorcontrib>Daveluy, Steve</creatorcontrib><creatorcontrib>Mehregan, Darius</creatorcontrib><creatorcontrib>Podoleanu, Adrian</creatorcontrib><creatorcontrib>Nasiriavanaki, Mohammadreza</creatorcontrib><title>An overview of methods to mitigate artifacts in optical coherence tomography imaging of the skin</title><title>Skin research and technology</title><addtitle>Skin Res Technol</addtitle><description>Background Optical coherence tomography (OCT) of skin delivers three‐dimensional images of tissue microstructures. Although OCT imaging offers a promising high‐resolution modality, OCT images suffer from some artifacts that lead to misinterpretation of tissue structures. Therefore, an overview of methods to mitigate artifacts in OCT imaging of the skin is of paramount importance. Speckle, intensity decay, and blurring are three major artifacts in OCT images. Speckle is due to the low coherent light source used in the configuration of OCT. Intensity decay is a deterioration of light with respect to depth, and blurring is the consequence of deficiencies of optical components. Method Two speckle reduction methods (one based on artificial neural network and one based on spatial compounding), an attenuation compensation algorithm (based on Beer‐Lambert law) and a deblurring procedure (using deconvolution), are described. Moreover, optical properties extraction algorithm based on extended Huygens‐Fresnel (EHF) principle to obtain some additional information from OCT images are discussed. Results In this short overview, we summarize some of the image enhancement algorithms for OCT images which address the abovementioned artifacts. The results showed a significant improvement in the visibility of the clinically relevant features in the images. The quality improvement was evaluated using several numerical assessment measures. Conclusion Clinical dermatologists benefit from using these image enhancement algorithms to improve OCT diagnosis and essentially function as a noninvasive optical biopsy.</description><subject>Algorithms</subject><subject>Artificial neural networks</subject><subject>Biopsy</subject><subject>Blurring</subject><subject>blurring correction</subject><subject>Coherent light</subject><subject>Decay</subject><subject>Extremely high frequencies</subject><subject>Image enhancement</subject><subject>Image quality</subject><subject>intensity decay compensation</subject><subject>Light sources</subject><subject>Luminous intensity</subject><subject>Medical imaging</subject><subject>Neural networks</subject><subject>Optical Coherence Tomography</subject><subject>Optical components</subject><subject>Optical properties</subject><subject>Planet detection</subject><subject>Quality control</subject><subject>Reviews</subject><subject>Skin</subject><subject>speckle reduction</subject><subject>Tomography</subject><issn>0909-752X</issn><issn>1600-0846</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp10E1PGzEQBmALFZUAPfAHKktc4LDg7909RogvKRJSC1Jvrtc7mzjdXQfbAeXfY0jaA1LnMpdHr2ZehE4ouaB5LmNIF5QJxvfQhCpCClIJ9QVNSE3qopTs1wE6jHFJCJE15V_RAaup4ILVE_R7OmL_AuHFwSv2HR4gLXwbcfJ4cMnNTQJsQnKdsSlil_EqOWt6bP0CAowWMh38PJjVYoPdYOZunL8HpQXg-MeNx2i_M32Eb7t9hJ5urh-v7orZw-391XRWWF5VvGikqNpSloqpzjAuZAMWaEMqgLYCJtuubjhjbWNsqaSQVWeFykNZazpRGn6Ezra5q-Cf1xCTHly00PdmBL-OmtZKMkUoJZmefqJLvw5jvk4zwqSsOeMqq_OtssHHGKDTq5D_CxtNiX6vXefa9Uft2X7fJa6bAdp_8m_PGVxuwavrYfP_JP3zx-M28g2WYIx7</recordid><startdate>201805</startdate><enddate>201805</enddate><creator>Adabi, Saba</creator><creator>Fotouhi, Audrey</creator><creator>Xu, Qiuyun</creator><creator>Daveluy, Steve</creator><creator>Mehregan, Darius</creator><creator>Podoleanu, Adrian</creator><creator>Nasiriavanaki, Mohammadreza</creator><general>John Wiley &amp; Sons, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-1437-8456</orcidid></search><sort><creationdate>201805</creationdate><title>An overview of methods to mitigate artifacts in optical coherence tomography imaging of the skin</title><author>Adabi, Saba ; Fotouhi, Audrey ; Xu, Qiuyun ; Daveluy, Steve ; Mehregan, Darius ; Podoleanu, Adrian ; Nasiriavanaki, Mohammadreza</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3883-b548d757626fa2345bece1b08eed8e25df9b322dbac765458fc4666612daf47a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Algorithms</topic><topic>Artificial neural networks</topic><topic>Biopsy</topic><topic>Blurring</topic><topic>blurring correction</topic><topic>Coherent light</topic><topic>Decay</topic><topic>Extremely high frequencies</topic><topic>Image enhancement</topic><topic>Image quality</topic><topic>intensity decay compensation</topic><topic>Light sources</topic><topic>Luminous intensity</topic><topic>Medical imaging</topic><topic>Neural networks</topic><topic>Optical Coherence Tomography</topic><topic>Optical components</topic><topic>Optical properties</topic><topic>Planet detection</topic><topic>Quality control</topic><topic>Reviews</topic><topic>Skin</topic><topic>speckle reduction</topic><topic>Tomography</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Adabi, Saba</creatorcontrib><creatorcontrib>Fotouhi, Audrey</creatorcontrib><creatorcontrib>Xu, Qiuyun</creatorcontrib><creatorcontrib>Daveluy, Steve</creatorcontrib><creatorcontrib>Mehregan, Darius</creatorcontrib><creatorcontrib>Podoleanu, Adrian</creatorcontrib><creatorcontrib>Nasiriavanaki, Mohammadreza</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Skin research and technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Adabi, Saba</au><au>Fotouhi, Audrey</au><au>Xu, Qiuyun</au><au>Daveluy, Steve</au><au>Mehregan, Darius</au><au>Podoleanu, Adrian</au><au>Nasiriavanaki, Mohammadreza</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An overview of methods to mitigate artifacts in optical coherence tomography imaging of the skin</atitle><jtitle>Skin research and technology</jtitle><addtitle>Skin Res Technol</addtitle><date>2018-05</date><risdate>2018</risdate><volume>24</volume><issue>2</issue><spage>265</spage><epage>273</epage><pages>265-273</pages><issn>0909-752X</issn><eissn>1600-0846</eissn><abstract>Background Optical coherence tomography (OCT) of skin delivers three‐dimensional images of tissue microstructures. Although OCT imaging offers a promising high‐resolution modality, OCT images suffer from some artifacts that lead to misinterpretation of tissue structures. Therefore, an overview of methods to mitigate artifacts in OCT imaging of the skin is of paramount importance. Speckle, intensity decay, and blurring are three major artifacts in OCT images. Speckle is due to the low coherent light source used in the configuration of OCT. Intensity decay is a deterioration of light with respect to depth, and blurring is the consequence of deficiencies of optical components. Method Two speckle reduction methods (one based on artificial neural network and one based on spatial compounding), an attenuation compensation algorithm (based on Beer‐Lambert law) and a deblurring procedure (using deconvolution), are described. Moreover, optical properties extraction algorithm based on extended Huygens‐Fresnel (EHF) principle to obtain some additional information from OCT images are discussed. Results In this short overview, we summarize some of the image enhancement algorithms for OCT images which address the abovementioned artifacts. The results showed a significant improvement in the visibility of the clinically relevant features in the images. The quality improvement was evaluated using several numerical assessment measures. Conclusion Clinical dermatologists benefit from using these image enhancement algorithms to improve OCT diagnosis and essentially function as a noninvasive optical biopsy.</abstract><cop>England</cop><pub>John Wiley &amp; Sons, Inc</pub><pmid>29143429</pmid><doi>10.1111/srt.12423</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-1437-8456</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0909-752X
ispartof Skin research and technology, 2018-05, Vol.24 (2), p.265-273
issn 0909-752X
1600-0846
language eng
recordid cdi_proquest_miscellaneous_1965260110
source Wiley-Blackwell Titles (Open access)
subjects Algorithms
Artificial neural networks
Biopsy
Blurring
blurring correction
Coherent light
Decay
Extremely high frequencies
Image enhancement
Image quality
intensity decay compensation
Light sources
Luminous intensity
Medical imaging
Neural networks
Optical Coherence Tomography
Optical components
Optical properties
Planet detection
Quality control
Reviews
Skin
speckle reduction
Tomography
title An overview of methods to mitigate artifacts in optical coherence tomography imaging of the skin
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T10%3A40%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_24P&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20overview%20of%20methods%20to%20mitigate%20artifacts%20in%20optical%20coherence%20tomography%20imaging%20of%20the%20skin&rft.jtitle=Skin%20research%20and%20technology&rft.au=Adabi,%20Saba&rft.date=2018-05&rft.volume=24&rft.issue=2&rft.spage=265&rft.epage=273&rft.pages=265-273&rft.issn=0909-752X&rft.eissn=1600-0846&rft_id=info:doi/10.1111/srt.12423&rft_dat=%3Cproquest_24P%3E1965260110%3C/proquest_24P%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3883-b548d757626fa2345bece1b08eed8e25df9b322dbac765458fc4666612daf47a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2025593236&rft_id=info:pmid/29143429&rfr_iscdi=true