Loading…
Environmental Life Cycle Assessment of marine sediment decontamination by citric acid enhanced-microwave heating
The potential ability of microwave heating (MWH) for the remediation of marine sediments affected by severe hydrocarbon (HC) contamination was investigated. Decontamination effectiveness and environmental sustainability through a comparative Life Cycle Assessment (LCA) were addressed. Main results r...
Saved in:
Published in: | The Science of the total environment 2018-04, Vol.619-620, p.72-82 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The potential ability of microwave heating (MWH) for the remediation of marine sediments affected by severe hydrocarbon (HC) contamination was investigated. Decontamination effectiveness and environmental sustainability through a comparative Life Cycle Assessment (LCA) were addressed. Main results revealed that the application of a 650-W MWH treatment resulted in a rapid (15min) HC removal. A citric acid (CA) dose of 0.1M led to enhanced-HC removals of 76.9, 96.5 and 99.7% after 5, 10 and 15min of MW irradiation, respectively. The increase in CA dose to 0.2M resulted in a shorter successful remediation time of 10min. The exponential kinetic model adopted showed a good correlation with the experimental data with R2 values in the 0.913–0.987 range. The nature of the MW treatment was shown to differently influence the HC fraction concentration after the irradiation process. Achieved HC removals in such a short remediation time are hardly possible by other clean-up techniques, making the studied treatment a potential excellent choice. Removal mechanisms, which allowed the enhanced-MWH to operate as a highly effective multi-step technique (pure thermal desorption+chemical washing), undoubtedly represent a key factor in the whole remediation process. The LCA highlighted that the MW technology is the most environmentally sustainable alternative for sediment decontamination applications, with a total damage, which was 75.74% lower than that associated with the EK (0.0503pt).
[Display omitted]
•A citric acid enhanced-MW treatment of TPH-contaminated sediment was investigated.•The environmental sustainability of the treatment through a LCA study was assessed.•Citric acid/MW resulted in a very rapid and effective (>99%) decontamination.•Results revealed pure thermal desorption and chemical washing as removal mechanisms.•The LCA classified MW technology as the most effective sustainable alternative. |
---|---|
ISSN: | 0048-9697 1879-1026 |
DOI: | 10.1016/j.scitotenv.2017.11.085 |