Loading…

Relevance of surface characteristics in the adhesiveness of polymicrobial biofilms to crown restoration materials

We used a polymicrobial (PM) biofilm model to examine associations of bacterial adhesiveness with surface characteristics of various dental materials. Four types of dental materials (apatite pellet, zirconia, ceramic, and composite resin) with rough and mirror surfaces were used. Surface roughness,...

Full description

Saved in:
Bibliographic Details
Published in:Journal of Oral Science 2018, Vol.60(1), pp.129-136
Main Authors: Teranaka, Ayako, Tomiyama, Kiyoshi, Ohashi, Katsura, Miyake, Kaori, Shimizu, Tota, Hamada, Nobushiro, Mukai, Yoshiharu, Hirayama, Satoshi, Nihei, Tomotaro
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We used a polymicrobial (PM) biofilm model to examine associations of bacterial adhesiveness with surface characteristics of various dental materials. Four types of dental materials (apatite pellet, zirconia, ceramic, and composite resin) with rough and mirror surfaces were used. Surface roughness, surface free energy, zeta potential, and colony-forming units (CFUs) of the biofilm formations were measured. Biofilms were cultured for 24 h under anaerobic conditions, plated onto blood agar medium, and anaerobically cultured for 4 days. After culturing, CFU per mm2 was calculated, and samples were observed under a scanning electron microscope. Means and standard deviations of the experimental data were estimated, and one-way ANOVA and Tukey multiple comparison assays were performed. Pearson correlation coefficients were obtained for the CFU and surface characteristics. Surface roughness and surface free energy appeared to affect generation of PM biofilms on oral materials, and zeta potential was involved in generation of PM biofilms on mirror-ground oral materials.
ISSN:1343-4934
1880-4926
DOI:10.2334/josnusd.16-0758