Loading…

Optical gain in colloidal quantum dots achieved with direct-current electrical pumping

Chemically synthesized semiconductor quantum dots (QDs) can potentially enable solution-processable laser diodes with a wide range of operational wavelengths, yet demonstrations of lasing from the QDs are still at the laboratory stage. An important challenge—realization of lasing with electrical inj...

Full description

Saved in:
Bibliographic Details
Published in:Nature materials 2018-01, Vol.17 (1), p.42-49
Main Authors: Lim, Jaehoon, Park, Young-Shin, Klimov, Victor I.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c379t-70a481d30f76579582b5f1df23cde2e542856152ea5a277913b3278592fc84cd3
cites cdi_FETCH-LOGICAL-c379t-70a481d30f76579582b5f1df23cde2e542856152ea5a277913b3278592fc84cd3
container_end_page 49
container_issue 1
container_start_page 42
container_title Nature materials
container_volume 17
creator Lim, Jaehoon
Park, Young-Shin
Klimov, Victor I.
description Chemically synthesized semiconductor quantum dots (QDs) can potentially enable solution-processable laser diodes with a wide range of operational wavelengths, yet demonstrations of lasing from the QDs are still at the laboratory stage. An important challenge—realization of lasing with electrical injection—remains unresolved, largely due to fast nonradiative Auger recombination of multicarrier states that represent gain-active species in the QDs. Here we present population inversion and optical gain in colloidal nanocrystals realized with direct-current electrical pumping. Using continuously graded QDs, we achieve a considerable suppression of Auger decay such that it can be outpaced by electrical injection. Further, we apply a special current-focusing device architecture, which allows us to produce high current densities ( j ) up to ∼18 A cm −2 without damaging either the QDs or the injection layers. The quantitative analysis of electroluminescence and current-modulated transmission spectra indicates that with j = 3–4 A cm −2 we achieve the population inversion of the band-edge states. Core/shell type-I semiconductor nanocrystals with compositionally graded shell and embedded in a current-focusing device architecture reach population inversion, a condition required for lasing, when excited with direct current.
doi_str_mv 10.1038/nmat5011
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1969919617</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1969919617</sourcerecordid><originalsourceid>FETCH-LOGICAL-c379t-70a481d30f76579582b5f1df23cde2e542856152ea5a277913b3278592fc84cd3</originalsourceid><addsrcrecordid>eNpdkFtLwzAYhoMobh7AXyAFb_SimqRNk1yKeILBbtTbkiXpltGmXQ6K_97oNpVBSL58eXi-8AJwhuA1ggW7sZ0IBCK0B8aopFVeVhXc39QIYTwCR94vIcSIkOoQjDBHDFIKx-BtOgQjRZvNhbFZWrJv296o1FlFYUPsMtUHnwm5MPpdq-zDhEWmjNMy5DI6p23IdJtu7kczxG4wdn4CDhrRen26OY_B68P9y91TPpk-Pt_dTnJZUB5yCkXJkCpgQytCOWF4RhqkGlxIpbEmJWakQgRrQQSmlKNiVmDKCMeNZKVUxTG4XHsH16-i9qHujJe6bYXVffQ14hXnaUM0oRc76LKPzqbfJYoyShkn5E8oXe-90009ONMJ91kjWH9nXW-zTuj5RhhnnVa_4DbcBFytAZ-e7Fy7fxN3ZV_b7IcC</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1978778955</pqid></control><display><type>article</type><title>Optical gain in colloidal quantum dots achieved with direct-current electrical pumping</title><source>Nature</source><creator>Lim, Jaehoon ; Park, Young-Shin ; Klimov, Victor I.</creator><creatorcontrib>Lim, Jaehoon ; Park, Young-Shin ; Klimov, Victor I.</creatorcontrib><description>Chemically synthesized semiconductor quantum dots (QDs) can potentially enable solution-processable laser diodes with a wide range of operational wavelengths, yet demonstrations of lasing from the QDs are still at the laboratory stage. An important challenge—realization of lasing with electrical injection—remains unresolved, largely due to fast nonradiative Auger recombination of multicarrier states that represent gain-active species in the QDs. Here we present population inversion and optical gain in colloidal nanocrystals realized with direct-current electrical pumping. Using continuously graded QDs, we achieve a considerable suppression of Auger decay such that it can be outpaced by electrical injection. Further, we apply a special current-focusing device architecture, which allows us to produce high current densities ( j ) up to ∼18 A cm −2 without damaging either the QDs or the injection layers. The quantitative analysis of electroluminescence and current-modulated transmission spectra indicates that with j = 3–4 A cm −2 we achieve the population inversion of the band-edge states. Core/shell type-I semiconductor nanocrystals with compositionally graded shell and embedded in a current-focusing device architecture reach population inversion, a condition required for lasing, when excited with direct current.</description><identifier>ISSN: 1476-1122</identifier><identifier>EISSN: 1476-4660</identifier><identifier>DOI: 10.1038/nmat5011</identifier><identifier>PMID: 29180770</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/624/1020 ; 639/925/927/1021 ; Augers ; Biomaterials ; Colloid chemistry ; Condensed Matter Physics ; Electroluminescence ; Injection ; Lasing ; Materials Science ; Nanocrystals ; Nanotechnology ; Optical and Electronic Materials ; Optical pumping ; Population inversion ; Quantitative analysis ; Quantum dots ; Semiconductor lasers ; Wavelengths</subject><ispartof>Nature materials, 2018-01, Vol.17 (1), p.42-49</ispartof><rights>Springer Nature Limited 2017</rights><rights>Copyright Nature Publishing Group Jan 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c379t-70a481d30f76579582b5f1df23cde2e542856152ea5a277913b3278592fc84cd3</citedby><cites>FETCH-LOGICAL-c379t-70a481d30f76579582b5f1df23cde2e542856152ea5a277913b3278592fc84cd3</cites><orcidid>0000-0003-2623-3550 ; 0000-0003-4204-1305 ; 0000-0003-1158-3179</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29180770$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lim, Jaehoon</creatorcontrib><creatorcontrib>Park, Young-Shin</creatorcontrib><creatorcontrib>Klimov, Victor I.</creatorcontrib><title>Optical gain in colloidal quantum dots achieved with direct-current electrical pumping</title><title>Nature materials</title><addtitle>Nature Mater</addtitle><addtitle>Nat Mater</addtitle><description>Chemically synthesized semiconductor quantum dots (QDs) can potentially enable solution-processable laser diodes with a wide range of operational wavelengths, yet demonstrations of lasing from the QDs are still at the laboratory stage. An important challenge—realization of lasing with electrical injection—remains unresolved, largely due to fast nonradiative Auger recombination of multicarrier states that represent gain-active species in the QDs. Here we present population inversion and optical gain in colloidal nanocrystals realized with direct-current electrical pumping. Using continuously graded QDs, we achieve a considerable suppression of Auger decay such that it can be outpaced by electrical injection. Further, we apply a special current-focusing device architecture, which allows us to produce high current densities ( j ) up to ∼18 A cm −2 without damaging either the QDs or the injection layers. The quantitative analysis of electroluminescence and current-modulated transmission spectra indicates that with j = 3–4 A cm −2 we achieve the population inversion of the band-edge states. Core/shell type-I semiconductor nanocrystals with compositionally graded shell and embedded in a current-focusing device architecture reach population inversion, a condition required for lasing, when excited with direct current.</description><subject>639/624/1020</subject><subject>639/925/927/1021</subject><subject>Augers</subject><subject>Biomaterials</subject><subject>Colloid chemistry</subject><subject>Condensed Matter Physics</subject><subject>Electroluminescence</subject><subject>Injection</subject><subject>Lasing</subject><subject>Materials Science</subject><subject>Nanocrystals</subject><subject>Nanotechnology</subject><subject>Optical and Electronic Materials</subject><subject>Optical pumping</subject><subject>Population inversion</subject><subject>Quantitative analysis</subject><subject>Quantum dots</subject><subject>Semiconductor lasers</subject><subject>Wavelengths</subject><issn>1476-1122</issn><issn>1476-4660</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNpdkFtLwzAYhoMobh7AXyAFb_SimqRNk1yKeILBbtTbkiXpltGmXQ6K_97oNpVBSL58eXi-8AJwhuA1ggW7sZ0IBCK0B8aopFVeVhXc39QIYTwCR94vIcSIkOoQjDBHDFIKx-BtOgQjRZvNhbFZWrJv296o1FlFYUPsMtUHnwm5MPpdq-zDhEWmjNMy5DI6p23IdJtu7kczxG4wdn4CDhrRen26OY_B68P9y91TPpk-Pt_dTnJZUB5yCkXJkCpgQytCOWF4RhqkGlxIpbEmJWakQgRrQQSmlKNiVmDKCMeNZKVUxTG4XHsH16-i9qHujJe6bYXVffQ14hXnaUM0oRc76LKPzqbfJYoyShkn5E8oXe-90009ONMJ91kjWH9nXW-zTuj5RhhnnVa_4DbcBFytAZ-e7Fy7fxN3ZV_b7IcC</recordid><startdate>20180101</startdate><enddate>20180101</enddate><creator>Lim, Jaehoon</creator><creator>Park, Young-Shin</creator><creator>Klimov, Victor I.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SR</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>K9.</scope><scope>KB.</scope><scope>L6V</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-2623-3550</orcidid><orcidid>https://orcid.org/0000-0003-4204-1305</orcidid><orcidid>https://orcid.org/0000-0003-1158-3179</orcidid></search><sort><creationdate>20180101</creationdate><title>Optical gain in colloidal quantum dots achieved with direct-current electrical pumping</title><author>Lim, Jaehoon ; Park, Young-Shin ; Klimov, Victor I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c379t-70a481d30f76579582b5f1df23cde2e542856152ea5a277913b3278592fc84cd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>639/624/1020</topic><topic>639/925/927/1021</topic><topic>Augers</topic><topic>Biomaterials</topic><topic>Colloid chemistry</topic><topic>Condensed Matter Physics</topic><topic>Electroluminescence</topic><topic>Injection</topic><topic>Lasing</topic><topic>Materials Science</topic><topic>Nanocrystals</topic><topic>Nanotechnology</topic><topic>Optical and Electronic Materials</topic><topic>Optical pumping</topic><topic>Population inversion</topic><topic>Quantitative analysis</topic><topic>Quantum dots</topic><topic>Semiconductor lasers</topic><topic>Wavelengths</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lim, Jaehoon</creatorcontrib><creatorcontrib>Park, Young-Shin</creatorcontrib><creatorcontrib>Klimov, Victor I.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Engineered Materials Abstracts</collection><collection>Health &amp; Medical Collection (Proquest)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Science Database (ProQuest)</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>Nature materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lim, Jaehoon</au><au>Park, Young-Shin</au><au>Klimov, Victor I.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optical gain in colloidal quantum dots achieved with direct-current electrical pumping</atitle><jtitle>Nature materials</jtitle><stitle>Nature Mater</stitle><addtitle>Nat Mater</addtitle><date>2018-01-01</date><risdate>2018</risdate><volume>17</volume><issue>1</issue><spage>42</spage><epage>49</epage><pages>42-49</pages><issn>1476-1122</issn><eissn>1476-4660</eissn><abstract>Chemically synthesized semiconductor quantum dots (QDs) can potentially enable solution-processable laser diodes with a wide range of operational wavelengths, yet demonstrations of lasing from the QDs are still at the laboratory stage. An important challenge—realization of lasing with electrical injection—remains unresolved, largely due to fast nonradiative Auger recombination of multicarrier states that represent gain-active species in the QDs. Here we present population inversion and optical gain in colloidal nanocrystals realized with direct-current electrical pumping. Using continuously graded QDs, we achieve a considerable suppression of Auger decay such that it can be outpaced by electrical injection. Further, we apply a special current-focusing device architecture, which allows us to produce high current densities ( j ) up to ∼18 A cm −2 without damaging either the QDs or the injection layers. The quantitative analysis of electroluminescence and current-modulated transmission spectra indicates that with j = 3–4 A cm −2 we achieve the population inversion of the band-edge states. Core/shell type-I semiconductor nanocrystals with compositionally graded shell and embedded in a current-focusing device architecture reach population inversion, a condition required for lasing, when excited with direct current.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>29180770</pmid><doi>10.1038/nmat5011</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-2623-3550</orcidid><orcidid>https://orcid.org/0000-0003-4204-1305</orcidid><orcidid>https://orcid.org/0000-0003-1158-3179</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1476-1122
ispartof Nature materials, 2018-01, Vol.17 (1), p.42-49
issn 1476-1122
1476-4660
language eng
recordid cdi_proquest_miscellaneous_1969919617
source Nature
subjects 639/624/1020
639/925/927/1021
Augers
Biomaterials
Colloid chemistry
Condensed Matter Physics
Electroluminescence
Injection
Lasing
Materials Science
Nanocrystals
Nanotechnology
Optical and Electronic Materials
Optical pumping
Population inversion
Quantitative analysis
Quantum dots
Semiconductor lasers
Wavelengths
title Optical gain in colloidal quantum dots achieved with direct-current electrical pumping
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T15%3A26%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optical%20gain%20in%20colloidal%20quantum%20dots%20achieved%20with%20direct-current%20electrical%20pumping&rft.jtitle=Nature%20materials&rft.au=Lim,%20Jaehoon&rft.date=2018-01-01&rft.volume=17&rft.issue=1&rft.spage=42&rft.epage=49&rft.pages=42-49&rft.issn=1476-1122&rft.eissn=1476-4660&rft_id=info:doi/10.1038/nmat5011&rft_dat=%3Cproquest_cross%3E1969919617%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c379t-70a481d30f76579582b5f1df23cde2e542856152ea5a277913b3278592fc84cd3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1978778955&rft_id=info:pmid/29180770&rfr_iscdi=true