Loading…
Optical gain in colloidal quantum dots achieved with direct-current electrical pumping
Chemically synthesized semiconductor quantum dots (QDs) can potentially enable solution-processable laser diodes with a wide range of operational wavelengths, yet demonstrations of lasing from the QDs are still at the laboratory stage. An important challenge—realization of lasing with electrical inj...
Saved in:
Published in: | Nature materials 2018-01, Vol.17 (1), p.42-49 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c379t-70a481d30f76579582b5f1df23cde2e542856152ea5a277913b3278592fc84cd3 |
---|---|
cites | cdi_FETCH-LOGICAL-c379t-70a481d30f76579582b5f1df23cde2e542856152ea5a277913b3278592fc84cd3 |
container_end_page | 49 |
container_issue | 1 |
container_start_page | 42 |
container_title | Nature materials |
container_volume | 17 |
creator | Lim, Jaehoon Park, Young-Shin Klimov, Victor I. |
description | Chemically synthesized semiconductor quantum dots (QDs) can potentially enable solution-processable laser diodes with a wide range of operational wavelengths, yet demonstrations of lasing from the QDs are still at the laboratory stage. An important challenge—realization of lasing with electrical injection—remains unresolved, largely due to fast nonradiative Auger recombination of multicarrier states that represent gain-active species in the QDs. Here we present population inversion and optical gain in colloidal nanocrystals realized with direct-current electrical pumping. Using continuously graded QDs, we achieve a considerable suppression of Auger decay such that it can be outpaced by electrical injection. Further, we apply a special current-focusing device architecture, which allows us to produce high current densities (
j
) up to ∼18 A cm
−2
without damaging either the QDs or the injection layers. The quantitative analysis of electroluminescence and current-modulated transmission spectra indicates that with
j
= 3–4 A cm
−2
we achieve the population inversion of the band-edge states.
Core/shell type-I semiconductor nanocrystals with compositionally graded shell and embedded in a current-focusing device architecture reach population inversion, a condition required for lasing, when excited with direct current. |
doi_str_mv | 10.1038/nmat5011 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1969919617</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1969919617</sourcerecordid><originalsourceid>FETCH-LOGICAL-c379t-70a481d30f76579582b5f1df23cde2e542856152ea5a277913b3278592fc84cd3</originalsourceid><addsrcrecordid>eNpdkFtLwzAYhoMobh7AXyAFb_SimqRNk1yKeILBbtTbkiXpltGmXQ6K_97oNpVBSL58eXi-8AJwhuA1ggW7sZ0IBCK0B8aopFVeVhXc39QIYTwCR94vIcSIkOoQjDBHDFIKx-BtOgQjRZvNhbFZWrJv296o1FlFYUPsMtUHnwm5MPpdq-zDhEWmjNMy5DI6p23IdJtu7kczxG4wdn4CDhrRen26OY_B68P9y91TPpk-Pt_dTnJZUB5yCkXJkCpgQytCOWF4RhqkGlxIpbEmJWakQgRrQQSmlKNiVmDKCMeNZKVUxTG4XHsH16-i9qHujJe6bYXVffQ14hXnaUM0oRc76LKPzqbfJYoyShkn5E8oXe-90009ONMJ91kjWH9nXW-zTuj5RhhnnVa_4DbcBFytAZ-e7Fy7fxN3ZV_b7IcC</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1978778955</pqid></control><display><type>article</type><title>Optical gain in colloidal quantum dots achieved with direct-current electrical pumping</title><source>Nature</source><creator>Lim, Jaehoon ; Park, Young-Shin ; Klimov, Victor I.</creator><creatorcontrib>Lim, Jaehoon ; Park, Young-Shin ; Klimov, Victor I.</creatorcontrib><description>Chemically synthesized semiconductor quantum dots (QDs) can potentially enable solution-processable laser diodes with a wide range of operational wavelengths, yet demonstrations of lasing from the QDs are still at the laboratory stage. An important challenge—realization of lasing with electrical injection—remains unresolved, largely due to fast nonradiative Auger recombination of multicarrier states that represent gain-active species in the QDs. Here we present population inversion and optical gain in colloidal nanocrystals realized with direct-current electrical pumping. Using continuously graded QDs, we achieve a considerable suppression of Auger decay such that it can be outpaced by electrical injection. Further, we apply a special current-focusing device architecture, which allows us to produce high current densities (
j
) up to ∼18 A cm
−2
without damaging either the QDs or the injection layers. The quantitative analysis of electroluminescence and current-modulated transmission spectra indicates that with
j
= 3–4 A cm
−2
we achieve the population inversion of the band-edge states.
Core/shell type-I semiconductor nanocrystals with compositionally graded shell and embedded in a current-focusing device architecture reach population inversion, a condition required for lasing, when excited with direct current.</description><identifier>ISSN: 1476-1122</identifier><identifier>EISSN: 1476-4660</identifier><identifier>DOI: 10.1038/nmat5011</identifier><identifier>PMID: 29180770</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/624/1020 ; 639/925/927/1021 ; Augers ; Biomaterials ; Colloid chemistry ; Condensed Matter Physics ; Electroluminescence ; Injection ; Lasing ; Materials Science ; Nanocrystals ; Nanotechnology ; Optical and Electronic Materials ; Optical pumping ; Population inversion ; Quantitative analysis ; Quantum dots ; Semiconductor lasers ; Wavelengths</subject><ispartof>Nature materials, 2018-01, Vol.17 (1), p.42-49</ispartof><rights>Springer Nature Limited 2017</rights><rights>Copyright Nature Publishing Group Jan 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c379t-70a481d30f76579582b5f1df23cde2e542856152ea5a277913b3278592fc84cd3</citedby><cites>FETCH-LOGICAL-c379t-70a481d30f76579582b5f1df23cde2e542856152ea5a277913b3278592fc84cd3</cites><orcidid>0000-0003-2623-3550 ; 0000-0003-4204-1305 ; 0000-0003-1158-3179</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29180770$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lim, Jaehoon</creatorcontrib><creatorcontrib>Park, Young-Shin</creatorcontrib><creatorcontrib>Klimov, Victor I.</creatorcontrib><title>Optical gain in colloidal quantum dots achieved with direct-current electrical pumping</title><title>Nature materials</title><addtitle>Nature Mater</addtitle><addtitle>Nat Mater</addtitle><description>Chemically synthesized semiconductor quantum dots (QDs) can potentially enable solution-processable laser diodes with a wide range of operational wavelengths, yet demonstrations of lasing from the QDs are still at the laboratory stage. An important challenge—realization of lasing with electrical injection—remains unresolved, largely due to fast nonradiative Auger recombination of multicarrier states that represent gain-active species in the QDs. Here we present population inversion and optical gain in colloidal nanocrystals realized with direct-current electrical pumping. Using continuously graded QDs, we achieve a considerable suppression of Auger decay such that it can be outpaced by electrical injection. Further, we apply a special current-focusing device architecture, which allows us to produce high current densities (
j
) up to ∼18 A cm
−2
without damaging either the QDs or the injection layers. The quantitative analysis of electroluminescence and current-modulated transmission spectra indicates that with
j
= 3–4 A cm
−2
we achieve the population inversion of the band-edge states.
Core/shell type-I semiconductor nanocrystals with compositionally graded shell and embedded in a current-focusing device architecture reach population inversion, a condition required for lasing, when excited with direct current.</description><subject>639/624/1020</subject><subject>639/925/927/1021</subject><subject>Augers</subject><subject>Biomaterials</subject><subject>Colloid chemistry</subject><subject>Condensed Matter Physics</subject><subject>Electroluminescence</subject><subject>Injection</subject><subject>Lasing</subject><subject>Materials Science</subject><subject>Nanocrystals</subject><subject>Nanotechnology</subject><subject>Optical and Electronic Materials</subject><subject>Optical pumping</subject><subject>Population inversion</subject><subject>Quantitative analysis</subject><subject>Quantum dots</subject><subject>Semiconductor lasers</subject><subject>Wavelengths</subject><issn>1476-1122</issn><issn>1476-4660</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNpdkFtLwzAYhoMobh7AXyAFb_SimqRNk1yKeILBbtTbkiXpltGmXQ6K_97oNpVBSL58eXi-8AJwhuA1ggW7sZ0IBCK0B8aopFVeVhXc39QIYTwCR94vIcSIkOoQjDBHDFIKx-BtOgQjRZvNhbFZWrJv296o1FlFYUPsMtUHnwm5MPpdq-zDhEWmjNMy5DI6p23IdJtu7kczxG4wdn4CDhrRen26OY_B68P9y91TPpk-Pt_dTnJZUB5yCkXJkCpgQytCOWF4RhqkGlxIpbEmJWakQgRrQQSmlKNiVmDKCMeNZKVUxTG4XHsH16-i9qHujJe6bYXVffQ14hXnaUM0oRc76LKPzqbfJYoyShkn5E8oXe-90009ONMJ91kjWH9nXW-zTuj5RhhnnVa_4DbcBFytAZ-e7Fy7fxN3ZV_b7IcC</recordid><startdate>20180101</startdate><enddate>20180101</enddate><creator>Lim, Jaehoon</creator><creator>Park, Young-Shin</creator><creator>Klimov, Victor I.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SR</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>K9.</scope><scope>KB.</scope><scope>L6V</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-2623-3550</orcidid><orcidid>https://orcid.org/0000-0003-4204-1305</orcidid><orcidid>https://orcid.org/0000-0003-1158-3179</orcidid></search><sort><creationdate>20180101</creationdate><title>Optical gain in colloidal quantum dots achieved with direct-current electrical pumping</title><author>Lim, Jaehoon ; Park, Young-Shin ; Klimov, Victor I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c379t-70a481d30f76579582b5f1df23cde2e542856152ea5a277913b3278592fc84cd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>639/624/1020</topic><topic>639/925/927/1021</topic><topic>Augers</topic><topic>Biomaterials</topic><topic>Colloid chemistry</topic><topic>Condensed Matter Physics</topic><topic>Electroluminescence</topic><topic>Injection</topic><topic>Lasing</topic><topic>Materials Science</topic><topic>Nanocrystals</topic><topic>Nanotechnology</topic><topic>Optical and Electronic Materials</topic><topic>Optical pumping</topic><topic>Population inversion</topic><topic>Quantitative analysis</topic><topic>Quantum dots</topic><topic>Semiconductor lasers</topic><topic>Wavelengths</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lim, Jaehoon</creatorcontrib><creatorcontrib>Park, Young-Shin</creatorcontrib><creatorcontrib>Klimov, Victor I.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Engineered Materials Abstracts</collection><collection>Health & Medical Collection (Proquest)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Science Database (ProQuest)</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>Nature materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lim, Jaehoon</au><au>Park, Young-Shin</au><au>Klimov, Victor I.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optical gain in colloidal quantum dots achieved with direct-current electrical pumping</atitle><jtitle>Nature materials</jtitle><stitle>Nature Mater</stitle><addtitle>Nat Mater</addtitle><date>2018-01-01</date><risdate>2018</risdate><volume>17</volume><issue>1</issue><spage>42</spage><epage>49</epage><pages>42-49</pages><issn>1476-1122</issn><eissn>1476-4660</eissn><abstract>Chemically synthesized semiconductor quantum dots (QDs) can potentially enable solution-processable laser diodes with a wide range of operational wavelengths, yet demonstrations of lasing from the QDs are still at the laboratory stage. An important challenge—realization of lasing with electrical injection—remains unresolved, largely due to fast nonradiative Auger recombination of multicarrier states that represent gain-active species in the QDs. Here we present population inversion and optical gain in colloidal nanocrystals realized with direct-current electrical pumping. Using continuously graded QDs, we achieve a considerable suppression of Auger decay such that it can be outpaced by electrical injection. Further, we apply a special current-focusing device architecture, which allows us to produce high current densities (
j
) up to ∼18 A cm
−2
without damaging either the QDs or the injection layers. The quantitative analysis of electroluminescence and current-modulated transmission spectra indicates that with
j
= 3–4 A cm
−2
we achieve the population inversion of the band-edge states.
Core/shell type-I semiconductor nanocrystals with compositionally graded shell and embedded in a current-focusing device architecture reach population inversion, a condition required for lasing, when excited with direct current.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>29180770</pmid><doi>10.1038/nmat5011</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-2623-3550</orcidid><orcidid>https://orcid.org/0000-0003-4204-1305</orcidid><orcidid>https://orcid.org/0000-0003-1158-3179</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1476-1122 |
ispartof | Nature materials, 2018-01, Vol.17 (1), p.42-49 |
issn | 1476-1122 1476-4660 |
language | eng |
recordid | cdi_proquest_miscellaneous_1969919617 |
source | Nature |
subjects | 639/624/1020 639/925/927/1021 Augers Biomaterials Colloid chemistry Condensed Matter Physics Electroluminescence Injection Lasing Materials Science Nanocrystals Nanotechnology Optical and Electronic Materials Optical pumping Population inversion Quantitative analysis Quantum dots Semiconductor lasers Wavelengths |
title | Optical gain in colloidal quantum dots achieved with direct-current electrical pumping |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T15%3A26%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optical%20gain%20in%20colloidal%20quantum%20dots%20achieved%20with%20direct-current%20electrical%20pumping&rft.jtitle=Nature%20materials&rft.au=Lim,%20Jaehoon&rft.date=2018-01-01&rft.volume=17&rft.issue=1&rft.spage=42&rft.epage=49&rft.pages=42-49&rft.issn=1476-1122&rft.eissn=1476-4660&rft_id=info:doi/10.1038/nmat5011&rft_dat=%3Cproquest_cross%3E1969919617%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c379t-70a481d30f76579582b5f1df23cde2e542856152ea5a277913b3278592fc84cd3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1978778955&rft_id=info:pmid/29180770&rfr_iscdi=true |