Loading…
Curcumin Cocrystal Micelles—Multifunctional Nanocomposites for Management of Neurodegenerative Ailments
Curcumin, a potent antioxidant polyphenol with neuroprotective and antiamyloid activities, has significant potential in the treatment of neurodegenerative disorders such as Alzheimer's disease. However, its clinical translation is delayed due to poor bioavailability. For effective use of curcum...
Saved in:
Published in: | Journal of pharmaceutical sciences 2018-04, Vol.107 (4), p.1143-1156 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Curcumin, a potent antioxidant polyphenol with neuroprotective and antiamyloid activities, has significant potential in the treatment of neurodegenerative disorders such as Alzheimer's disease. However, its clinical translation is delayed due to poor bioavailability. For effective use of curcumin in Alzheimer's disease, it is imperative to increase its bioavailability with enhanced delivery at a therapeutic site that is, brain. With this objective, pharmaceutical cocrystals of curcumin were developed and incorporated in micellar nanocarriers for nose-to-brain delivery. For cocrystals, an antioxidant hydrophilic coformer was strategically selected using molecular modeling approach. The cocrystals were formulated using a planetary ball mill, and the process was optimized using 32 factorial design followed by characterization using differential scanning calorimetry, X-ray diffraction, and Fourier-transform infrared spectroscopy analysis. The cocrystal micelles exhibited globule size of 28.79 ± 0.86 nm. Further, curcumin cocrystal and co-crystal micelles exhibited a significantly low (p value |
---|---|
ISSN: | 0022-3549 1520-6017 |
DOI: | 10.1016/j.xphs.2017.11.014 |